1
|
Shan L, Huang Y, Zhou J, Du R, Liu Y, Tan Y, Su Y, Guo Y. Enhancing intact allergen protein detection in dairy products: Preventing fragmentation and aggregation with Sinapinic acid salt in MALDI-TOF MS analysis. Food Chem 2025; 477:143593. [PMID: 40023946 DOI: 10.1016/j.foodchem.2025.143593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The development of efficient detection technology for dairy allergens represents a crucial concern for public health. In this study, a strategy utilizing sinapinic acid salt (SAS) for analyzing allergen proteins through MALDI-TOF MS is presented. SAS has proven to be a superior matrix compared to solid matrices, as it inhibits aggregation and prevents fragmentation, thereby yielding more reliable molecular mass values of intact allergen proteins. Furthermore, our results indicate that SAS offers higher sensitivity than solid matrices for milk protein analysis. The use of SAS also results in excellent repeatability and a strong linear relationship. By directly analyzing commercially available dairy products, this method has been confirmed to accurately differentiate allergen proteins across various types and brands of dairy products, and it is promising as a novel tool for detecting dairy allergen proteins in the future.
Collapse
Affiliation(s)
- Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhou
- Institute of Quality Inspection of Food and Chemicals, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China, Shanghai 200233, PR China
| | - Ruyun Du
- Institute of Quality Inspection of Food and Chemicals, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China, Shanghai 200233, PR China
| | - Yang Liu
- Institute of Quality Inspection of Food and Chemicals, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China, Shanghai 200233, PR China
| | - Ying Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China..
| |
Collapse
|
2
|
Huang Y, Chen D, Shan L, Lu Y, Bai J, Fu Y, Zhou Y, Su Y, Guo Y. The crucial quality marker of Panax ginseng: Glycosylated modified ribonuclease-like storage protein. Int J Biol Macromol 2024; 282:136894. [PMID: 39490867 DOI: 10.1016/j.ijbiomac.2024.136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Panax ginseng C.A.Mey is a famous natural herbal medicine worldwide. Mountain-cultivated ginseng (MCG) and garden-cultivated ginseng (GCG) are two types of Panax ginseng. There is a significant difference in economic benefits between MCG and GCG, which can always lead to problems such as adulteration and substitution of MCG with lower-priced alternatives. We explored the quality marker of ginseng at the intact protein level and established a foundation for the quality control of ginseng. Cellulose nanocrystal assisted sample preparation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) equipped with a high mass detector was performed to analyze intact proteins in ginseng. The results revealed that the ribonuclease-like storage protein is the most abundant protein in MCG and GCG. Meanwhile, the molecular weight of the ribonuclease-like storage protein showed great difference between different ginseng species, which is 26.2 kDa in MCG and 24.2 kDa in GCG. The ribonuclease-like storage protein glycosylation modification difference provides data support for the differentiation between MCG and GCG. This study showed that glycosylated modified ribonuclease-like storage protein can be a crucial quality marker of ginseng, facilitating the rapid distinction between MCG and GCG.
Collapse
Affiliation(s)
- Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China; State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Danqing Chen
- Shanghai SPH Shenxiang Health Co., LTD, Shanghai 200235, PR China
| | - Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ying Fu
- Shanghai Pharmaceutical School, Shanghai 200135, PR China
| | - Yaobin Zhou
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, PR China.
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| |
Collapse
|
3
|
Shan L, Qiao Y, Ma L, Zhang X, Chen C, Xu X, Li D, Qiu S, Xue X, Yu Y, Guo Y, Qian K, Wang J. AuNPs/CNC Nanocomposite with A "Dual Dispersion" Effect for LDI-TOF MS Analysis of Intact Proteins in NSCLC Serum Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307360. [PMID: 38224220 DOI: 10.1002/advs.202307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.
Collapse
Affiliation(s)
- Liang Shan
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345, Lingling Road, Shanghai, 200032, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| |
Collapse
|
4
|
Shan L, Huang Y, Zhang J, Su Y, Guo Y. Inhibiting Protein Aggregation Using Cellulose Nanocrystal in MALDI-TOF MS Analysis: Improving the Sensitivity and Repeatability of Intact Protein in Pueraria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20146-20154. [PMID: 38060840 DOI: 10.1021/acs.jafc.3c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Protein aggregation can induce low sensitivity and poor repeatability of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS) analysis for intact protein. Herein, we introduced a strategy to decrease protein aggregation in the sample solution by using cellulose nanocrystal (CNC). The results indicated that protein granule size was effectively reduced by adding CNC to the sample solution. Through MALDI-TOF MS analysis, the signal-to-noise ratio of [M + H]+ peak increased 2-fold, and the detection of limit was <10 μg/mL for intact protein. The CNC also contributed to excellent point-to-point repeatability for MALDI-TOF MS analysis with the coefficient of variation (CV) of 10.0% with CNC vs 48.9% without CNC in Hb solution. Also, the repeatability of Pueraria protein ion signals was improved by using CNC, and the CV with and without CNC was 16.1% and 39.6%, respectively. Moreover, protein ion intensity exhibited great linear relationship (y = 53.04x - 3.474, R2 = 0.9936) with the concentrations (ranging from 0.1 to 10 mg/mL) when using CNC. Further investigation revealed that m/z 19,000 and m/z 21,000 peaks of Pueraria could be used for the adulteration analysis and post-translational modification research, demonstrating our method has the potential for broad applications.
Collapse
Affiliation(s)
- Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
5
|
Point-of-care diagnostics for sepsis using clinical biomarkers and microfluidic technology. Biosens Bioelectron 2023; 227:115181. [PMID: 36867959 DOI: 10.1016/j.bios.2023.115181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Sepsis is a life-threatening immune response which is caused by a wide variety of sources and is a leading cause of mortality globally. Rapid diagnosis and appropriate antibiotic treatment are critical for successful patient outcomes; however, current molecular diagnostic techniques are time-consuming, costly and require trained personnel. Additionally, there is a lack of rapid point-of-care (POC) devices available for sepsis detection despite the urgent requirements in emergency departments and low-resource areas. Recent advances have been made toward developing a POC test for early sepsis detection that will be more rapid and accurate compared to conventional techniques. Within this context, this review discusses the use of current and novel biomarkers for early sepsis diagnosis using microfluidics devices for POC testing.
Collapse
|
6
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|