1
|
Sunstrum FN, Khan JU, Li NW, Welsh AW. Wearable textile sensors for continuous glucose monitoring. Biosens Bioelectron 2025; 273:117133. [PMID: 39808994 DOI: 10.1016/j.bios.2025.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors. This review investigates electronic textiles (e-textiles) that integrate biomedical sensors into wearable fabrics that can enable a multimodal platform for non-invasive continuous glucose monitoring (CGM). Current advancements in e-textiles show the potential of four key methods for glucose monitoring: optical, biochemical, biomechanical, and thermal sensing techniques. Biochemical sensing through sweat-based glucose detection has demonstrated potential for accurate and non-invasive monitoring but still faces numerous challenges. While optical, biomechanical and thermal sensing are less explored in e-textiles, they offer additional physiological and environmental insights that can improve the precision of glucose readings by providing cross-validation of data. This review proposes that integrating multiple sensing modalities into a single multimodal e-textile wearable can address the accuracy and reliability challenges by providing cross-validation of data. The development of such multimodal e-textiles has the potential to revolutionise diabetes and cardiovascular disease management by providing continuous, accurate, and holistic monitoring in real-time, which could significantly improve patient outcomes and quality of life. Further research and development are crucial to fully realise the potential of these integrated systems in clinical and everyday settings.
Collapse
Affiliation(s)
- Frédérique N Sunstrum
- School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, Australia.
| | - Jawairia Umar Khan
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Nga-Wun Li
- School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, Australia
| | - Alec W Welsh
- School of Clinical Medicine, Discipline of Women's Health, Faculty of Medicine, University of New South Wales, Royal Hospital for Women, Sydney, Australia; Department of Maternal-Fetal Medicine, Royal Hospital for Women, Sydney, Australia.
| |
Collapse
|
2
|
Yang T, Li D, Cao M, Zhang C, Zhang W, Zhao Y. Engineering hybrid CuS/Co 3S 4 nanocages by ion reutilization for highly sensitive glucose sensing platforms. Talanta 2025; 285:127302. [PMID: 39632315 DOI: 10.1016/j.talanta.2024.127302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Constructing hybrid hollow nano-electrocatalysts with various transition metal sulfides (TMSs) is highly desirable for sensitive enzyme-free glucose monitoring, but limited research has been conducted due to the constraints of current demanding synthesis technologies. In this study, we integrated CuS and Co3S4 as hybrid nanocages (h-NCs) by advanced synthetic strategies, including coordinated etching and precipitation (CEP) and template ion reutilization. The resulting CuS/Co3S4 h-NCs induced good synergistic effect in electrocatalytic activities, glucose adsorption, and electrical conductivity, as validated by the density functional theory (DFT) calculations. When employed as glucose sensing platforms, electrodes incorporating CuS/Co3S4 h-NCs demonstrated high-performance sensing characteristics, with excellent sensitivities up to 2731.8 μA mM-1 cm2, wide linear range of 0.001-5.6 mM, low detection limit (90 nM), and ideal stability. Moreover, CuS/Co3S4 h-NCs were promising to analyze glucose in human serum with good recoveries ranging from 92.4 % to 96.7 %. These findings underscore the benefits of integrating different TMSs to create hybrid hollow nanomaterials, which optimize glucose sensing platforms and expand the design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Tong Yang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, PR China.
| | - Dong Li
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, PR China
| | - Minglei Cao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, PR China
| | - Chuankun Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, PR China
| | - Wenna Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, PR China.
| | - Yan Zhao
- College of Materials Science and Technology, Sichuan University, Chengdu, 610065, PR China; The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
3
|
Zhang W, Jiang S, Yu H, Feng S, Zhang K. Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat. iScience 2025; 28:111737. [PMID: 39911346 PMCID: PMC11795103 DOI: 10.1016/j.isci.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10-1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications.
Collapse
Affiliation(s)
- Wensi Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shuyue Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hongquan Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihuan Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Matada MSS, Ghuge RS, Jayaraman SV, Di Natale C, Sivalingam Y. A step towards non-invasive diagnosis of diabetes mellitus using in situ synthesized MOF-MXene hybrid material with extended gate field-effect transistor integration. J Mater Chem B 2025; 13:1753-1766. [PMID: 39714134 DOI: 10.1039/d4tb01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The increasing demand for non-invasive and non-enzymatic glucose sensors is driven by the objective of eliminating the need for blood pricks from the body and enabling enzyme-free detection of glucose for diagnosing diabetes mellitus. To address this need, we synthesized Ni MOF-MXene (NiBDC-MXene) hybrid material through a one-pot synthesis method, which acts as a catalyst to detect salivary glucose using an extended gate field effect transistor (EGFET) method. The resulting sensor exhibits good selectivity towards glucose over common interfering molecules such as sucrose, fructose, maltose, uric acid, and ascorbic acid under physiological conditions in saliva. The fabricated electrode demonstrated high sensitivity of 531.78 μA mM-1 cm-2 with a detection range of 10 μM to 1100 μM, a sensor response time of less than 5 s, and a limit of detection (LOD) of 0.29 μM. The real saliva sample measurements under postabsorptive and postprandial conditions highlight the electrode's effectiveness in detecting salivary glucose. In addition to EGFET measurements, scanning Kelvin probe (SKP) measurements were performed to understand the mechanism of charge transfer between the glucose and NiBDC-MXene/CP electrode. Overall, the EGFET results demonstrate the capability of the sensor to detect salivary glucose in hypoglycemia, normal, and hyperglycemia ranges.
Collapse
Affiliation(s)
- Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.
| | - Rahul Suresh Ghuge
- Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai 980-8579, Miyagi, Japan
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE, King Abdullah University of Science and Technology (KAUST)), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Pavadai R, Arivazhagan M, Jakmunee J, Pavadai N, Palanisamy R, Honnu G, Kityakarn S, Khumphon J, Issro C, Khamboonrueang D, Thongmee S. Highly Porous 3D Ni-MOFs as an Efficient and Enzyme-Mimic Electrochemical Sensing Platform for Glucose in Real Samples of Sweat and Saliva in Biomedical Applications. ACS OMEGA 2025; 10:1610-1623. [PMID: 39829515 PMCID: PMC11740627 DOI: 10.1021/acsomega.4c09437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate. The Ni-TMAF based on the nonenzymatic electrochemical glucose oxidation represent the promising approach, leveraging the unique properties of Ni-TMAF to provide efficient, stable, and potentially more cost-effective alternatives to traditional enzyme-mimic sensors. The MOF is synthesized from trimesic acid (TMA) and nickel nitrate hexahydrate through a solvothermal reaction process. The resulting Ni-TMAF utilizes the three-dimensional nanospheres of crystalline porous structure with a large surface area and numerous active sites for catalytic reaction toward glucose. Ni-TMAF are indeed known for their excellent electrocatalytic activity, particularly in the context of glucose oxidation under alkaline conditions. The nickel centers in the Ni-TMAF facilitate efficient electron transfer and redox reactions, leading to the high sensitivity of 203.89 μA μM-1 cm-2 and lower LOD of 0.33 μM and fast response time of <3 s in glucose sensors. Their stability, cost-effectiveness, and high performance make 3D Ni-TMAF a promising material for nonenzymatic electrochemical glucose sensors.
Collapse
Affiliation(s)
- Rajaji Pavadai
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Department
of Chemistry, Dhanalakshmi Srinivasan College
of Engineering and Technology, Mamallapuram, Chennai 603104, India
| | - Mani Arivazhagan
- Research
Laboratory for Analytical Instrument and Electrochemistry Innovation,
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Jaroon Jakmunee
- Research
Laboratory on Advanced Materials for Sensor and Biosensor Innovation,
Materials Science Research Center, and Center of Excellence for Innovation
in Chemistry, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Nethaji Pavadai
- Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Revathi Palanisamy
- Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesha Honnu
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Sutasinee Kityakarn
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jeerawan Khumphon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Chaisak Issro
- Department
of Physics, Faculty of Science, Burapha
University, Chonburi 20131, Thailand
| | - Dusadee Khamboonrueang
- Faculty
of Science and Technology, Nakhon Sawan
Rajabaht University, Mueang District, Nakhon Sawan 60000, Thailand
| | - Sirikanjana Thongmee
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
7
|
Ajayi DT, Teepoo S. A nanosilica-coated thread-based analytical device for nitrate and nitrite detection in food samples. Talanta 2024; 279:126582. [PMID: 39053357 DOI: 10.1016/j.talanta.2024.126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
A new microfluidic thread-based analytical device (μTAD) for nitrate and nitrite determination in food samples was developed. The cotton thread substrate was coated with nanosilica to increase its hydrophilicity and stability, and polylactic acid was applied to one end of the nanosilica-coated thread to constrain the fluid flow along the thread in one direction. Quantification of nitrate and nitrite was based on the modified Griess reaction, using sulfanilamide and N-(1-naphthyl) ethylenediamine as chromogenic reagents, and utilizing a distance-based detection technique. Linear responses were observed in a range of 4-25 mg L-1 (R2 = 0.9991) for nitrite and a range of 8-50 mg L-1 (R2 = 0.9989) for nitrate. The limits of detection for nitrite and nitrate were 1.5 and 3.1 mg L-1, respectively. The detection time was 5 min for nitrite analysis, and 7 min for nitrate analysis. The new method demonstrated good precision, accuracy, selectivity, and stability. The performance of the proposed μTAD for nitrite and nitrate determination in real food samples was comparable to that of the conventional UV-Vis spectrophotometric method. The proposed μTAD could serve as a simple, low-cost, and portable method for nitrite and nitrate detection in food samples.
Collapse
Affiliation(s)
- David Taiwo Ajayi
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
8
|
Wahid AA, Usman M, Haleem YA, Ahmed A, Raza K, Munir MU, Pan L, Khan A. Fabrication of a graphene@Ni foam-supported silver nanoplates-PANI 3D architecture electrode for enzyme-free glucose sensing. NANOTECHNOLOGY 2024; 35:495501. [PMID: 39284312 DOI: 10.1088/1361-6528/ad7b41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition. The resulting binder-free 3D Ag-PANI/G@NF electrode was highly porous, as characterized by x-ray photoelectron spectroscopy, Field emission scanning electron microscope, x-ray diffractometer, FTIR, and Raman spectroscopy. The binder-free 3D Ag-PANI/G@NF electrode exhibits remarkable electrochemical efficiency with a superior electrochemical active surface area. The amperometric analysis provides excellent anti-interference performance, a low limit of deduction (0.1 nM), robust sensitivity (1.7 × 1013µA mM-1cm-2), and a good response time. Moreover, the Ag-PANI/G@NF enzyme-free sensor is utilized to observe glucose levels in human blood serums and exhibits excellent potential to become a reliable clinical glucose sensor.
Collapse
Affiliation(s)
- Ahtisham Abdul Wahid
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Usman
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Yasir A Haleem
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Kabeer Raza
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lujan Pan
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Aslam Khan
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
9
|
Shubhangi, Divya, Rai SK, Chandra P. Shifting paradigm in electrochemical biosensing matrices comprising metal organic frameworks and their composites in disease diagnosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1980. [PMID: 38973017 DOI: 10.1002/wnan.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Metal Organic Frameworks (MOFs) are an evolving category of crystalline microporous materials that have grabbed the research interest for quite some time due to their admirable physio-chemical properties and easy fabrication methods. Their enormous surface area can be a working ground for innumerable molecular adhesions and site for potential sensor matrices. They have been explored in the last decade for incorporation in electrochemical sensor matrices as diagnostic solutions for a plethora of diseases. This review emphasizes on some of the recent advancements in the area of MOF-based electrochemical biosensors with focus on various important diseases and their significance in upgrading the sensor performance. It summarizes MOF-based biosensors for monitoring biomarkers relevant to diabetes, viral and bacterial sepsis infections, neurological disorders, cardiovascular diseases, and cancer in a wide range of real matrices. The discussion has been supplemented with extensive tables elaborating recent trends in the field of MOF-composite probe fabrication strategies with their respective sensing parameters. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Sanjay K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
11
|
Ren H, Yang F, Cao M, Shan B, Chen R. Seamless integration of a nickel-based metal-organic framework with three-dimensional substrates for nonenzymatic glucose sensing. Dalton Trans 2024; 53:6300-6310. [PMID: 38482906 DOI: 10.1039/d4dt00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The effective integration of nanomaterials with underlying current collectors is a key factor affecting the performance of nonenzymatic glucose sensors, where an inappropriate integration structure often leads to poor electron transport and instability. In this work, a seamless integrated electrode was constructed by the in situ immobilizing of a nickel-based metal-organic framework (Ni-MOF) on a three-dimensional (3D) conductive nickel foam (NF) for highly sensitive and durable glucose sensing. Facilitated by a rapid microwave-assisted reaction, a robust interfacial interaction between the Ni-MOF and the substrate was established through in situ conversion from nickel oxide (NiO). The fabricated Ni-MOF/NF electrode exhibits an excellent limit of detection (LOD) of 2.65 μM and an impressive sensitivity (14.31 mA cm-2 mM-1) within the linear range (4-576 μM), which is significantly boosted compared with that of an electrode prepared by a typical drop-casting method (3.56 mA cm-2 mM-1 in 4-1836 μM). Characterization and electrochemical tests reveal that this integrated structure on the one hand contributes to fast electron transport and thus has enhanced sensitivity and on the other hand leads to exceptional durability with its structural integrity maintained under bending, shaking, and ultrasonication. Moreover, this seamless integration method was also employed to immobilize the Ni-MOF converted from the pre-chemically deposited NiO layer on another type of substrate, 3D carbon paper (CP), demonstrating the versatility of this facile strategy in creating diverse electrochemical electrodes for applications beyond glucose sensing.
Collapse
Affiliation(s)
- Haonan Ren
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Fan Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Meng Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|