1
|
Felizzato G, Sabo M, Petrìk M, Romolo FS. Laser Desorption-Ion Mobility Spectrometry of Explosives for Forensic and Security Applications. Molecules 2025; 30:138. [PMID: 39795197 PMCID: PMC11722068 DOI: 10.3390/molecules30010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The detection of explosives in crime scene investigations is critical for forensic science. This study explores the application of laser desorption (LD) ion mobility spectrometry (IMS) as a novel method for this purpose utilising a new IMS prototype developed by MaSaTECH. METHODS The LD sampling technique employs a laser diode module to vaporise explosive traces on surfaces, allowing immediate analysis by IMS without sample preparation. Chemometric approaches, including multivariate data analysis, were utilised for data processing and interpretation, including pre-processing of raw IMS plasmagrams and various pattern recognition techniques, such as linear discriminant analysis (LDA) and support vector machines (SVMs). RESULTS The IMS prototype was validated through experiments with pure explosives (TNT, RDX, PETN) and explosive products (SEMTEX 1A, C4) on different materials. The study found that the pre-processing method significantly impacts classification accuracy, with the PCA-LDA model demonstrating the best performance for real-world applications. CONCLUSIONS The LD-IMS prototype, coupled with effective chemometric techniques, presents a promising methodology for the detection of explosives in forensic investigations, enhancing the reliability of field applications.
Collapse
Affiliation(s)
- Giorgio Felizzato
- Department of Law, University of Bergamo, Via Moroni 255, 24127 Bergamo, Italy;
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Martin Sabo
- MaSa Tech, s.r.o., Sadová 3018/10, 916 01 Stará Turá, Slovakia; (M.S.)
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovičova 2, Bratislava 4, 842 16 Bratislava, Slovakia
| | - Matej Petrìk
- MaSa Tech, s.r.o., Sadová 3018/10, 916 01 Stará Turá, Slovakia; (M.S.)
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovičova 2, Bratislava 4, 842 16 Bratislava, Slovakia
| | | |
Collapse
|
2
|
Anttalainen O, Karjalainen M, Lattouf E, Hecht O, Vanninen P, Hakulinen H, Kotiaho T, Thomas C, Eiceman G. Time-Resolved Ion Mobility Spectrometry with a Stop Flow Confined Volume Reaction Region. Anal Chem 2024; 96:10182-10192. [PMID: 38857882 PMCID: PMC11209659 DOI: 10.1021/acs.analchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
An ion source concept is described where the sample flow is stopped in a confined volume of an ion mobility spectrometer creating time-dependent patterns of ion patterns of signal intensities for ions from mixtures of volatile organic compounds and improved signal-to-noise rate compared to conventional unidirectional drift gas flow. Hydrated protons from a corona discharge were introduced continuously into the confined volume with the sample in air at ambient pressure, and product ions were extracted continuously using an electric field for subsequent mobility analysis. Ion signal intensities for protonated monomers and proton bound dimers were measured and computationally extracted using mobilities from mobility spectra and exhibited distinct times of appearance over 30 s or more after sample injection. Models, and experimental findings with a ternary mixture, suggest that the separation of vapors as ions over time was consistent with differences in the reaction rate for reactions between primary ions from hydrated protons and constituents and from cross-reactions that follow the initial step of ionization. The findings suggest that the concept of stopped flow, introduced here for the first time, may provide a method for the temporal separation of atmospheric pressure ions. This separation relies on ion kinetics and does not require chromatographic technology.
Collapse
Affiliation(s)
- Osmo Anttalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Markus Karjalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elie Lattouf
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Oliver Hecht
- Airsense
Analytics GmbH, Hagenower
Straße 73, Schwerin 19061, Germany
| | - Paula Vanninen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Hakulinen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O.Box 55, Helsinki FIN-00014, Finland
| | - Charles Thomas
- Department
of Chemistry, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Gary Eiceman
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- New
Mexico
State University, 1175 N Horseshoe Dr., Las Cruces, New Mexico 88003, United States
| |
Collapse
|
3
|
Xu Y, Yang Q, Pan M, Jiang D, Yu Y, Chen C, Li H. Improving the Sensitivity and Linear Range of Photoionization Ion Mobility Spectrometry via Confining the Ion Recombination and Space Charge Effects Assisted by Theoretical Modeling. Anal Chem 2024; 96:3979-3987. [PMID: 38391328 DOI: 10.1021/acs.analchem.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Photoionization (PI) is an efficient ionization source for ion mobility spectrometry (IMS) and mass spectrometry. Its hyphenation with IMS (PI-IMS) has been employed in various on-site analysis scenarios targeting a wide range of compounds. However, the signal intensity and linear dynamic range of PI-IMS at ambient pressure usually do not follow the Beer-Lambert law predictions, and the factors causing that negative deviation remain unclear. In this work, a variable pressure PI-IMS system was developed to examine the ion loss effects from factors like ion recombination and space charge by varying its working pressure from 1 to 0.1 bar. Assisted by theoretical modeling, it was found that ion recombination could contribute up to 90% of signal intensity loss for ambient pressure PI-IMS setups. Lowering the pressure and increasing the electric field in PI-IMS helped suppress the ion recombination process and thus an optimal pressure Poptimal appeared for best signal intensity, despite the decreased net ion number density and the increased space charge effect. A simplified theoretical equation taking ion recombination as the primary ion loss factor was derived to link Poptimal with analyte concentration and electric field in PI-IMS, enabling a swift optimization of the PI-IMS performance. For example, compared to ambient pressure, PI-IMS at a Poptimal of 0.4 bar provided a signal intensity increment of more than 400% for 0.716 ppmv toluene and also expanded the linear dynamic range by more than two times. Revealing factors influencing the PI-IMS response would also benefit the applications of other chemical ionization sources in IMS or mass spectrometry (MS).
Collapse
Affiliation(s)
- Yiqian Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Qimu Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Manman Pan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Dandan Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Yi Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Chuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, People's Republic of China
| |
Collapse
|
4
|
Han Z, Wang N, Lv Y, Fu Q, Wang G, Su X. A novel self-assembled dual-emissive ratiometric fluorescent nanoprobe for alkaline phosphatase sensing. Anal Chim Acta 2024; 1287:342146. [PMID: 38182401 DOI: 10.1016/j.aca.2023.342146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alkaline phosphatase (ALP) is widely found in various organs and tissues of the human body which could assist in the verification of the presence of various diseases through its content in the blood. In the past few years, many analytical methods for ALP activity assays have been explored. However, a simple and economical method with high sensitivity and specificity also remains great challenge. Therefore, the development of sensitive and efficient approach for ALP analysis is of great significance in biomedical studies. RESULTS Herein, we constructed a highly sensitive and label-free ratiometric fluorometric biosensing platform for the determination of ALP activity, which utilizing lysozyme(Ly)-functionalized 5-methyl-2-thiouracil(MTU)-modified gold nanoclusters (MTU-Ly@Au NC) and poly-dopamine (PDA) as signal indicators. Dopamine (DA) can self-polymerizes to form PDA under alkaline conditions that can further quenched the fluorescence of MTU-Ly@Au NC at 525 nm due to fluorescence resonance energy transfer (FRET) and absorption competition quenching (ACQ) effects. In this process, the PDA fluorescence intensity at 325 nm was nearly unchanged. After the addition of ALP, ascorbic acid (AA) which can alleviate the self-polymerization process of DA was generated from the substrate ascorbic acid 2-phosphate (AAP), thus changing ratiometric fluorescence intensity of I525/I325. Hence, by monitoring the fluorescence ratio (I525/I325), a ratiometric fluorescence biosensing platform for ALP was established with the linear calibration in the range of 0.5-8 U L-1 and the limit of detection of 0.157 U L-1. SIGNIFICANCE This work not only synthesized a novel fluorescence probe with simple preparation and low cost for ALP which has excellent anti-interference properties and selectivity. Furthermore, this biosensing platform was successfully applied for the determination of ALP activity in human serum samples. This work provided a potential tool for biomedical diagnostics in the future.
Collapse
Affiliation(s)
- Zhixuan Han
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|