1
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
2
|
Cai Z, Zhang Y, Zhao M, Bao J, Lv L, Li H. A facile synthesis of water-soluble copper nanoclusters as label-free fluorescent probes for rapid, selective and sensitive determination of alizarin red. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124708. [PMID: 38936210 DOI: 10.1016/j.saa.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Copper nanoclusters (FA@CuNCs) emitting blue fluorescence were successfully developed via a one-pot technique. In this method, the copper chloride, folic acid and hydrazine hydrate were applied as a precursor, protective agent and reducing agent, respectively. The absorption, fluorescence excitation and emission spectra of FA@CuNCs were carried out by using ultraviolet-visible and fluorescence spectrometry, respectively. The morphology, particle size, functional groups, oxidation states of elements of FA@CuNCs were discussed via using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The stability of FA@CuNCs was studied under various conditions, such as storage time at 25 ℃, ultraviolet radiation time, sodium chloride solutione and pH. The FA@CuNCs displayed blue fluorescence under the excitation wavelength of 361 nm, and the fluorescence quantum yield was 7.45 %. As a result of the inner filter effect, the alizarin red could significantly weaken the blue fluorescence of FA@CuNCs. Thus, the as-prepared FA@CuNCs could be utilized as fluorescence nanosensors for the trace determination of alizarin red. This platform suggested an excellent linear range for alizarin red varying from 0.5 to 200 μM with a fitting coefficient of 0.9955. The detection limit was calculated to be 0.064 μM in the light of the 3b/k (b and k refer to the standard deviation and slope of fitted curve, respectively). Furthermore, the as-developed FA@CuNCs could be used to detect the alizarin red in real samples and for the sensing of temperature.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China.
| | - Yixuan Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Manlin Zhao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Jinjia Bao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Ling Lv
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Haoyang Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| |
Collapse
|
3
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
4
|
Cai Z, Li H, Yang X, Zhang M, Guo J, Su Y, Liu T. Blue-emitting tryptophan-protected gold nanoclusters acted as a sensitive nanosensor for fluorescence sensing and visual imaging detection of furaltadone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123748. [PMID: 38091651 DOI: 10.1016/j.saa.2023.123748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Herein, blue-emitting gold nanoclusters (Au NCs) were carried out through tryptophan as the protecting and reducing agents. In aqueous solution of Au NCs@tryptophan, the addition of furaltadone guaranteed the interaction of furaltadone with tryptophan around Au NCs. The propinquity of furaltadone to Au NCs caused that the fluorescence of Au NCs was weakened by furaltadone based on the inner filter effect (IFE). Under the optimal measurement conditions, the logarithm of relative fluorescence intensity of Au NCs@tryptophan was linearly carried out with the furaltadone amount increasing from 0.5 to 100 μM, the corresponding detection limit was 0.087 μM. The fluorescence change of Au NCs@tryptophan displayed excellent selectivity and sensitivity for furaltadone than other possible substance in the human body. In view of Au NCs@tryptophan, the as-performed fluorescence nanosensor suggested outstanding ability for furaltadone sensing in real samples. Obviously, this nanoprobe of furaltadone could implement the naked-eye visual fluorescence determination of furaltadone.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China.
| | - Huinan Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Xin Yang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Ming Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Jinhao Guo
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yani Su
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Taotao Liu
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| |
Collapse
|
5
|
Zhao D, Wang J, Gao L, Huang X, Zhu F, Wang F. Visualizing the intracellular aggregation behavior of gold nanoclusters via structured illumination microscopy and scanning transmission electron microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169153. [PMID: 38072282 DOI: 10.1016/j.scitotenv.2023.169153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Given the growing concerns about nanotoxicity, numerous studies have focused on providing mechanistic insights into nanotoxicity by imaging the intracellular fate of nanoparticles. A suitable imaging strategy is necessary to uncover the intracellular behavior of nanoparticles. Although each conventional technique has its own limitations, scanning transmission electron microscopy (STEM) and three-dimensional structured illumination microscopy (3D-SIM) combine the advantages of chemical element mapping, ultrastructural analysis, and cell dynamic tracking. Gold nanoclusters (AuNCs), synthesized using 6-aza-2 thiothymine (ATT) and L-arginine (Arg) as reducing and protecting ligands, referred to as Arg@ATT-AuNCs, have been widely used in biological sensing and imaging, medicine, and catalyst yield. Based on their intrinsic fluorescence and high electron density, Arg@ATT-AuNCs were selected as a model. STEM imaging showed that both the single-particle and aggregated states of Arg@ATT-AuNCs were compartmentally distributed within a single cell. Real-time 3D-SIM imaging showed that the fluorescent Arg@ATT-AuNCs gradually aggregated after being located in the lysosomes of living cells, causing lysosomal damage. The aggregate formation of Arg@ATT-AuNCs was triggered by the low-pH medium, particularly in the lysosomal acidic environment. The proposed dual imaging strategy was verified using other types of AuNCs, which is valuable for studying nano-cell interactions and any associated cytotoxicity, and has the potential to be a useful approach for exploring the interaction of cells with various nanoparticles.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jing Wang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200052, China.
| | - Fu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Verma M, Nisha A, Bathla M, Acharya A. Resveratrol-Encapsulated Glutathione-Modified Robust Mesoporous Silica Nanoparticles as an Antibacterial and Antibiofilm Coating Agent for Medical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58212-58229. [PMID: 38060572 DOI: 10.1021/acsami.3c13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The emergence of various lethal bacterial infections and their adherence to medical devices are major public health concerns. The increased bacterial exposure and titer are accompanied by the inappropriate use of antibiotics that sometimes lead to antibiotic resistance, and therefore, a drug-free antibacterial approach is required. Several nanoparticles (NPs) have been developed as antibacterial and antibiofilm coating agents, which can overcome different drug resistance mechanisms by inhibiting the important processes related to bacterial virulence potential. However, developing safe and biocompatible nanomaterials (NMs) for these applications has remained a major challenge due to their poorly understood mechanism of action. In this work, biogenic silica NPs were modified with glutathione (GSH) to form GSH@SNP (∼80 ± 15 nm) for targeting the bacterial cell surface and biofilm. GSH@SNP was loaded with resveratrol to obtain Res_GSH@SNP (∼124 ± 15 nm) that enhances the antibacterial activity of the NPs against Staphylococcus aureus and Escherichia coli by ∼51 and ∼49%, respectively, compared to GSH@SNP. Res_GSH@SNP is responsible for binding to the bacterial cell surface receptors that interrupt the cell membrane potential, leading to reactive oxygen species (ROS) generation, membrane disruption, and DNA damage and eventually resulting in antibacterial activity. Moreover, the antibiofilm activity of Res_GSH@SNP has been found to result from the interaction of the NPs with the abundant carbohydrates present on the biofilm surface. To check the practical utility of Res_GSH@SNP, these were further evaluated as an antibacterial and antibiofilm coating agent for urinary catheters and were found to be effective even after multiple washes. Res_GSH@SNP has been found to exhibit ∼80 ± 1.4% cytocompatibility toward fibroblast NIH-3T3 cells. Overall, this study is expected to pave the way for the development of biocompatible NP-based coating agents for medical devices.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Nisha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|