1
|
Jiang Y, Wang T, Qiao LX, Wang LJ, Zhang CY. Construction of an end-repairing-engineered quadratic in vitro transcription machine for single-molecule monitoring of alkaline phosphatase in human cancers. Talanta 2025; 283:127104. [PMID: 39490305 DOI: 10.1016/j.talanta.2024.127104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Alkaline phosphatase (ALP) is an essential hydrolase widely present in humans, and it extensively acts as a biomarker for multiple human diseases. Conventional ALP assays suffer from complicated synthesis, tedious operation, low sensitivity, and large sample consumption. Herein, we construct an end-repairing-engineered quadratic in vitro transcription machine for single-molecule monitoring of ALP in diverse cancers with 3'-phosphoryl (PO4) nucleic acid as a macromolecular substrate. In presence of ALP, it catalyzes the removal of 3'-PO4 group to yield a 3'-hydroxyl end in hairpin probe 1 (HP1). Under the catalysis of Taq ligase, 3'-hydroxylated HP1 and hairpin probe 2 (HP2) are ligated together to form an intact transcription template. With the addition of T7 RNA polymerase, in vitro transcription amplification is activated to synthesize numerous reporter probes. Resulting reporter probes can bind with signal probes to initiate duplex-specific nuclease (DSN)-aided cyclic degradation of signal probes. Eventually, multiple cycles of degradation-liberation-hybridization induce the generation of large amounts of FAM fluorophores that are counted via single-molecule imaging. Due to high specificity of ALP-directed 3'-end dephosphorylation, high efficiency of quadratic in vitro transcription cascades, and ultrahigh signal-to-noise ratio (SNR) of single-molecule counting, this machine can detect ALP with a limit of detection (LOD) of 7.93 × 10-8 U/μL in vitro and 1 cell in vivo. Furthermore, it can be applied for the evaluation of enzyme kinetics, screening of potential antidrugs, and quantification of ALP level in various cancer cells and human serums, holding potential in 3'-phosphatases-associated biological study and clinical diagnosis.
Collapse
Affiliation(s)
- Yao Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Li-Xue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Xia N, Li Y, He C, Deng D. Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays. BIOSENSORS 2024; 14:597. [PMID: 39727862 PMCID: PMC11674709 DOI: 10.3390/bios14120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays. Generally, signaling molecules can be entrapped in nanocontainers or self-assemble into nanostructures for signal amplification. In this review, we summarize the advances of signaling molecules-entrapped or assembled nanomaterials for colorimetric and fluorescence immunoassays. The nanocontainers cover liposomes, polymers, mesoporous silica, metal-organic frameworks (MOFs), various nanosheets, nanoflowers or nanocages, etc. Signaling molecules mainly refer to visible and/or fluorescent organic dyes. The design and application of immunoassays are emphasized from the perspective of nanocontainers, analytes, and analytical performances. In addition, the future challenges and research trends for the preparation of signaling molecules-entrapped or assembled nanolabels are briefly discussed.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (C.H.); (D.D.)
| | | | | | | |
Collapse
|
3
|
Guo W, Gu P, Li Y, Zhang C, Wang D, Zhang Y, Hao X, Liu G, Zhou S. Synthesis of tetraphenylethylene-based small molecular sensor for the selective "turn-on" detection of pyrophosphoric acid in the aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123990. [PMID: 38340450 DOI: 10.1016/j.saa.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics. TPE-4B was explicitly developed for the selective and sensitive fluorescence detection of PPi in aqueous solutions, showing a fluorescence "turn-on" response, and the detection limit was 65 nM. The four chelate pyridinium moieties of TPE-4B exhibited robust electrostatic interactions and binding capacity towards PPi, leading to the formation of aggregations, which was confirmed by zeta potential, dynamic light scattering, and scanning electron microscopy. Compared with free TPE-4B in the aqueous solution, the zeta potential of aggregations decreased from 20.7 to 4.2 mV, the average diameter increased from 155 to 403 nm, and the morphology transformed from porous nanostructures into a block-like format. Leveraging these properties, TPE-4B is a promising candidate for a "turn-on" fluorescence sensor designed to detect PPi in the aqueous solution.
Collapse
Affiliation(s)
- Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|