1
|
Maita H, Nakagawa S. Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis. Biochim Biophys Acta Gen Subj 2025; 1869:130764. [PMID: 39826814 DOI: 10.1016/j.bbagen.2025.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover. SMN, a chaperone for snRNP biogenesis, forms condensates through its Tudor domain. In fly models, defects in SMN trigger innate immune responses similar to those observed with excess cytoplasmic snRNA during viral infection in mammalian cells. Additionally, spinal muscular atrophy (SMA), caused by SMN deficiency, is associated with inflammation. Therefore, SMN may help prevent innate immune aberrant activation due to defective snRNP biogenesis by forming U-bodies to sequester these molecules. Further studies on U-body functions may provide therapeutic insights for diseases related to RNA metabolism.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Wang L, Li P. Arginine methylation-enabled FUS phase separation with SMN contributes to neuronal granule formation. Cell Rep 2024; 43:114537. [PMID: 39052476 DOI: 10.1016/j.celrep.2024.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Various ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS). Accordingly, FUS hypomethylation or knockdown of SMN disrupts the formation and transport of neuronal granules in axons. Wild-type SMN, but not the spinal muscular atrophy-associated form of SMN, SMN-Δ7, rescues neuronal defects due to SMN knockdown. Importantly, a fusion of SMN-Δ7 to an exogenous oligomeric protein is sufficient to rescue axon length defects caused by SMN knockdown. Our findings highlight the significant role of arginine methylation-enabled multivalent interactions in LLPS and suggest their potential impact on various aspects of neuronal activities in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyao Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
3
|
Ding S, Liao H, Huang F, Chen L, Guo W, Feng K, Huang T, Cai YD. Analyzing domain features of small proteins using a machine-learning method. Proteomics 2024; 24:e2300302. [PMID: 38258387 DOI: 10.1002/pmic.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Small proteins (SPs) are a unique group of proteins that play crucial roles in many important biological processes. Exploring the biological function of SPs is necessary. In this study, the InterPro tool and the maximum correlation method were utilized to analyze functional domains of SPs. The purpose was to identify important functional domains that can indicate the essential differences between small and large protein sequences. First, the small and large proteins were represented by their functional domains via a one-hot scheme. Then, the MaxRel method was adopted to evaluate the relationships between each domain and the target variable, indicating small or large protein. The top 36 domain features were selected for further investigation. Among them, 14 were deemed to be highly related to SPs because they were annotated to SPs more frequently than large proteins. We found the involvement of functional domains, such as ubiquitin-conjugating enzyme/RWD-like, nuclear transport factor 2 domain, and alpha subunit of guanine nucleotide-binding protein (G-protein) in regulating the biological function of SPs. The involvement of these domains has been confirmed by other recent studies. Our findings indicate that protein functional domains may regulate small protein-related functions and predict their biological activity.
Collapse
Affiliation(s)
- ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | | | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Payá G, Bautista V, Pastor-Soler S, Camacho M, Esclapez J, Bonete MJ. Analysis of Lsm Protein-Mediated Regulation in the Haloarchaeon Haloferax mediterranei. Int J Mol Sci 2024; 25:580. [PMID: 38203750 PMCID: PMC10779274 DOI: 10.3390/ijms25010580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; (G.P.); (V.B.); (S.P.-S.); (M.C.); (J.E.)
| |
Collapse
|
5
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
6
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Turner BRH, Mellor C, McElroy C, Bowen N, Gu W, Knill C, Itasaki N. Non-ubiquitous expression of core spliceosomal protein SmB/B' in chick and mouse embryos. Dev Dyn 2023; 252:276-293. [PMID: 36058892 PMCID: PMC10087933 DOI: 10.1002/dvdy.537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although splicing is an integral part of the expression of many genes in our body, genetic syndromes with spliceosomal defects affect only specific tissues. To help understand the mechanism, we investigated the expression pattern of a core protein of the major spliceosome, SmB/B' (Small Nuclear Ribonucleoprotein Polypeptides B/B'), which is encoded by SNRPB. Loss-of-function mutations of SNRPB in humans cause cerebro-costo-mandibular syndrome (CCMS) characterized by rib gaps, micrognathia, cleft palate, and scoliosis. Our expression analysis focused on the affected structures as well as non-affected tissues, using chick and mouse embryos as model animals. RESULTS Embryos at young stages (gastrula) showed ubiquitous expression of SmB/B'. However, the level and pattern of expression became tissue-specific as differentiation proceeded. The regions relating to CCMS phenotypes such as cartilages of ribs and vertebrae and palatal mesenchyme express SmB/B' in the nucleus sporadically. However, cartilages that are not affected in CCMS also showed similar expressions. Another spliceosomal gene, SNRNP200, which mutations cause retinitis pigmentosa, was also prominently expressed in cartilages in addition to the retina. CONCLUSION The expression of SmB/B' is spatiotemporally regulated during embryogenesis despite the ubiquitous requirement of the spliceosome, however, the expression pattern is not strictly correlated with the phenotype presentation.
Collapse
Affiliation(s)
| | | | - Clara McElroy
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Natalie Bowen
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Wenjia Gu
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Chris Knill
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Liu Y, Iqbal A, Li W, Ni Z, Wang Y, Ramprasad J, Abraham KJ, Zhang M, Zhao DY, Qin S, Loppnau P, Jiang H, Guo X, Brown PJ, Zhen X, Xu G, Mekhail K, Ji X, Bedford MT, Greenblatt JF, Min J. A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II. Nat Commun 2022; 13:5453. [PMID: 36114190 PMCID: PMC9481570 DOI: 10.1038/s41467-022-33229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.
Collapse
Affiliation(s)
- Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
| | - Aman Iqbal
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Weiguo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jurupula Ramprasad
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Karan Joshua Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mengmeng Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | | | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xingyue Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Khayrullina G, Alipio‐Gloria ZA, Deguise M, Gagnon S, Chehade L, Stinson M, Belous N, Bergman EM, Lischka FW, Rotty J, Dalgard CL, Kothary R, Johnson KA, Burnett BG. Survival motor neuron protein deficiency alters microglia reactivity. Glia 2022; 70:1337-1358. [PMID: 35373853 PMCID: PMC9081169 DOI: 10.1002/glia.24177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
Survival motor neuron (SMN) protein deficiency results in loss of alpha motor neurons and subsequent muscle atrophy in patients with spinal muscular atrophy (SMA). Reactive microglia have been reported in SMA mice and depleting microglia rescues the number of proprioceptive synapses, suggesting a role in SMA pathology. Here, we explore the contribution of lymphocytes on microglia reactivity in SMA mice and investigate how SMN deficiency alters the reactive profile of human induced pluripotent stem cell (iPSC)-derived microglia. We show that microglia adopt a reactive morphology in spinal cords of SMA mice. Ablating lymphocytes did not alter the reactive morphology of SMA microglia and did not improve the survival or motor function of SMA mice, indicating limited impact of peripheral immune cells on the SMA phenotype. We found iPSC-derived SMA microglia adopted an amoeboid morphology and displayed a reactive transcriptome profile, increased cell migration, and enhanced phagocytic activity. Importantly, cell morphology and electrophysiological properties of motor neurons were altered when they were incubated with conditioned media from SMA microglia. Together, these data reveal that SMN-deficient microglia adopt a reactive profile and exhibit an exaggerated inflammatory response with potential impact on SMA neuropathology.
Collapse
Affiliation(s)
- Guzal Khayrullina
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | | | - Marc‐Olivier Deguise
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
- Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Sabrina Gagnon
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Lucia Chehade
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
| | - Matthew Stinson
- Department of BiochemistryUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Natalya Belous
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Elizabeth M. Bergman
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Fritz W. Lischka
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Jeremy Rotty
- Department of BiochemistryUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
- The American Genome CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Rashmi Kothary
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
- Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Barrington G. Burnett
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| |
Collapse
|
10
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Choi K, Yang A, Baek J, Jeong H, Kang Y, Baek W, Kim JC, Kang M, Choi M, Ham Y, Son MJ, Han SB, Kim J, Jang JH, Ahn JS, Shen H, Woo SH, Kim JH, Cho S. Regulation of Survival Motor Neuron Gene Expression by Calcium Signaling. Int J Mol Sci 2021; 22:ijms221910234. [PMID: 34638572 PMCID: PMC8508836 DOI: 10.3390/ijms221910234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-β and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.
Collapse
Affiliation(s)
- Kwangman Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Medical Biotechnology, SoonChunHyang University, Asan 31538, Korea
| | - Ansook Yang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Jiyeon Baek
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Hyejeong Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Yura Kang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Woosun Baek
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Joon-Chul Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
| | - Mingu Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
| | - Min-Jeong Son
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jong Seog Ahn
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Haihong Shen
- Gwangju Institute of Science and Technology, School of life Sciences, Gwangju 61005, Korea;
| | - Sun-Hee Woo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.-C.K.); (M.-J.S.)
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea; (Y.K.); (W.B.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (K.C.); (A.Y.); (J.B.); (H.J.); (M.K.); (M.C.); (Y.H.)
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea; (J.-H.J.); (J.S.A.)
- Correspondence: (S.-H.W.); (J.H.K.); (S.C.); Tel.: +82-42-821-5924 (S.-H.W.); +82-31-920-2204 (J.H.K.); +82-43-240-6105 (S.C.); Fax: +82-42-823-6566 (S.-H.W.); +82-31-920-2006 (J.H.K.); +82-43-240-6159 (S.C)
| |
Collapse
|
12
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
13
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
14
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.29.441821. [PMID: 33948588 PMCID: PMC8095195 DOI: 10.1101/2021.04.29.441821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB) specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at some 80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
|
15
|
Baek J, Jeong H, Ham Y, Jo YH, Choi M, Kang M, Son B, Choi S, Ryu HW, Kim J, Shen H, Sydara K, Lee SW, Kim SY, Han SB, Oh SR, Cho S. Improvement of spinal muscular atrophy via correction of the SMN2 splicing defect by Brucea javanica (L.) Merr. extract and Bruceine D. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153089. [PMID: 31563042 DOI: 10.1016/j.phymed.2019.153089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare neuromuscular disease and a leading genetic cause of infant mortality. SMA is caused primarily by the deletion of the survival motor neuron 1 (SMN1) gene, which leaves the duplicate gene SMN2 as the sole source of SMN protein. The splicing defect (exon 7 skipping) of SMN2 leads to an insufficient amount of SMN protein. Therefore, correcting this SMN2 splicing defect is considered to be a promising approach for the treatment of SMA. PURPOSE This study aimed to identify active compounds and extracts from plant resources to rescue SMA phenotypes through the correction of SMN2 splicing. STUDY DESIGN Of available plant resources, candidates with SMA-related traditional medicine information were selected for screening using a robust luciferase-based SMN2 splicing reporter. Primary hits were further evaluated for their ability to correct the splicing defect and resultant increase of SMN activity in SMA patient-derived fibroblasts. Confirmed hits were finally tested to determine the beneficial effects on the severe Δ7 SMA mouse. METHODS SMN2 splicing was analyzed using a luciferase-based SMN2 splicing reporter and subsequent RT-PCR of SMN2 mRNAs. SMA phenotypes were evaluated by the survival, body weights, and righting reflex of Δ7 SMA mice. RESULTS In a screen of 492 selected plant extracts, we found that Brucea javanica extract and its major constituent Bruceine D have SMN2 splicing-correcting activity. Their ability to correct the splicing defect and the resulting increased SMN activity were further confirmed in SMA fibroblasts. Importantly, both B. javanica and Bruceine D noticeably improved the phenotypic defects, especially muscle function, in SMA mice. Reduced expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributed to the correction of splicing by B. javanica. CONCLUSION Our work revealed that B. javanica and Bruceine D correct the SMN2 splicing defect and improve the symptoms of SMA in mice. These resources will provide another possibility for development of a plant-derived SMA drug candidate.
Collapse
Affiliation(s)
- Jiyeon Baek
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyejeong Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yang Hee Jo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mingu Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Bora Son
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kongmany Sydara
- Ministry of Health, Institute of Traditional Medicine, Vientiane 116, Lao Democratic People's Republic
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
16
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
17
|
Venters CC, Oh JM, Di C, So BR, Dreyfuss G. U1 snRNP Telescripting: Suppression of Premature Transcription Termination in Introns as a New Layer of Gene Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/2/a032235. [PMID: 30709878 DOI: 10.1101/cshperspect.a032235] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent observations showed that nascent RNA polymerase II transcripts, pre-mRNAs, and noncoding RNAs are highly susceptible to premature 3'-end cleavage and polyadenylation (PCPA) from numerous intronic cryptic polyadenylation signals (PASs). The importance of this in gene regulation was not previously appreciated as PASs, despite their prevalence, were thought to be active in terminal exons at gene ends. Unexpectedly, antisense oligonucleotide interference with U1 snRNA base-pairing to 5' splice sites, which is necessary for U1 snRNP's (U1) function in splicing, caused widespread PCPA in metazoans. This uncovered U1's PCPA suppression activity, termed telescripting, as crucial for full-length transcription in thousands of vertebrate genes, providing a general role in transcription elongation control. Progressive intron-size expansion in metazoan evolution greatly increased PCPA vulnerability and dependence on U1 telescripting. We describe how these observations unfolded and discuss U1 telescripting's role in shaping the transcriptome.
Collapse
Affiliation(s)
- Christopher C Venters
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jung-Min Oh
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Staněk D, Girard C. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res 2018; 46:3774-3790. [PMID: 29415178 PMCID: PMC5909452 DOI: 10.1093/nar/gky070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/23/2023] Open
Abstract
Cajal bodies (CBs) are nuclear non-membrane bound organelles where small nuclear ribonucleoprotein particles (snRNPs) undergo their final maturation and quality control before they are released to the nucleoplasm. However, the molecular mechanism how immature snRNPs are targeted and retained in CBs has yet to be described. Here, we microinjected and expressed various snRNA deletion mutants as well as chimeric 7SK, Alu or bacterial SRP non-coding RNAs and provide evidence that Sm and SMN binding sites are necessary and sufficient for CB localization of snRNAs. We further show that Sm proteins, and specifically their GR-rich domains, are important for accumulating snRNPs in CBs. Accordingly, core snRNPs containing the Sm proteins, but not naked snRNAs, restore the formation of CBs after their depletion. Finally, we show that immature but not fully assembled snRNPs are able to induce CB formation and that microinjection of an excess of U2 snRNP-specific proteins, which promotes U2 snRNP maturation, chases U2 snRNA from CBs. We propose that the accessibility of the Sm ring represents the molecular basis for the quality control of the final maturation of snRNPs and the sequestration of immature particles in CBs.
Collapse
Affiliation(s)
- Adriana Roithová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Klimešová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Pánek
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyrille Girard
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Tseng YT, Chen CS, Jong YJ, Chang FR, Lo YC. Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy. Pharmacol Res 2016; 111:58-75. [DOI: 10.1016/j.phrs.2016.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
|
20
|
Francisco-Velilla R, Fernandez-Chamorro J, Ramajo J, Martinez-Salas E. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation. Nucleic Acids Res 2016; 44:8335-51. [PMID: 27507887 PMCID: PMC5041490 DOI: 10.1093/nar/gkw702] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.
Collapse
Affiliation(s)
| | | | - Jorge Ramajo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049-Madrid, Spain
| | | |
Collapse
|
21
|
Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 2016; 473:3049-63. [PMID: 27480107 DOI: 10.1042/bcj20160537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.
Collapse
|
22
|
So BR, Wan L, Zhang Z, Li P, Babiash E, Duan J, Younis I, Dreyfuss G. A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. Nat Struct Mol Biol 2016; 23:225-30. [PMID: 26828962 PMCID: PMC4834709 DOI: 10.1038/nsmb.3167] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN-Gemin2-recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN-Gemin2-Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core-assembly pathway. U1-70K hijacks SMN-Gemin2-Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN-Gemin2's ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN-Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism.
Collapse
Affiliation(s)
- Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lili Wan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenxi Zhang
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pilong Li
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Babiash
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jingqi Duan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ihab Younis
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Prior TW, Nagan N. Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches. ACTA ACUST UNITED AC 2016; 88:9.27.1-9.27.13. [PMID: 26724723 DOI: 10.1002/0471142905.hg0927s88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease and the most common genetic cause of infant mortality, affecting ∼1 in 10,000 live births. The disease is characterized by progressive symmetrical muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei. The disease is classified on the basis of age of onset and clinical course. SMA is caused by mutations in the telomeric copy of the survival motor neuron 1 (SMN1) gene, but all patients retain a centromeric copy of the gene, SMN2. The homozygous absence of the SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. In the majority of cases, the disease severity correlates inversely with an increased SMN2 gene copy number. Carrier detection, in the deletion cases, relies on the accurate determination of the SMN1 gene copies. Since SMA is one of the most common lethal genetic disorders, with a carrier frequency of 1 in 40 to 1 in 60, direct carrier dosage testing has been beneficial to many families. This unit attempts to highlight the molecular genetics of SMA with a focus on the advantages and limitations of the current molecular technologies.
Collapse
Affiliation(s)
- Thomas W Prior
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Narasimhan Nagan
- Integrated Genetics, Laboratory Corporation of America Holdings, Westborough, Massachusetts
| |
Collapse
|
24
|
Young PA, Leonard S, Martin DSD, Findlay JBC. Analysis of the effect of a novel therapeutic for type 2 diabetes on the proteome of a muscle cell line. Proteomics 2015; 16:70-9. [PMID: 26573124 DOI: 10.1002/pmic.201500050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 01/18/2023]
Abstract
Elevated serum retinol-binding protein (RBP) concentration has been implicated in the development of insulin resistance and type 2 diabetes. Two series of small molecules have been designed to lower serum levels by reducing secretion of the transthyretin-RBP complex from the liver and enhancing RBP clearance through the kidney. These small molecules were seen to improve glucose and insulin tolerance tests and to reduce body weight gain in mice rendered diabetic through a high fat diet. A proteomics study was conducted to better understand the effects of these compounds in muscle cells, muscle being the primary site for energy expenditure. One lead compound, RTC-15, is seen to have a significant effect on proteins involved in fat and glucose metabolism. This could indicate that the compound is having a direct effect on muscle tissue to improve energy homeostasis as well as a whole body effect on circulating RBP levels. This newly characterized group of antidiabetic compounds may prove useful in the treatment and prevention of insulin resistance and obesity.
Collapse
Affiliation(s)
- Pamela A Young
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Siobhán Leonard
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Darren S D Martin
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - John B C Findlay
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
25
|
Pelz JP, Schindelin H, van Pee K, Kuper J, Kisker C, Diederichs K, Fischer U, Grimm C. Crystallizing the 6S and 8S spliceosomal assembly intermediates: a complex project. ACTA ACUST UNITED AC 2015; 71:2040-53. [PMID: 26457428 DOI: 10.1107/s1399004715014832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Abstract
The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.
Collapse
Affiliation(s)
- Jann Patrick Pelz
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Katharina van Pee
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Kay Diederichs
- Protein Crystallography and Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
26
|
Protein-borne methionine residues as structural antioxidants in mitochondria. Amino Acids 2015; 47:1421-32. [DOI: 10.1007/s00726-015-1955-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
|
27
|
ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 2015; 6:6171. [PMID: 25625564 PMCID: PMC4338613 DOI: 10.1038/ncomms7171] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein FUS/TLS, mutation in which is causative of the fatal motor neuron disease ALS, is demonstrated to directly bind to the U1-snRNP and SMN complexes. ALS-causative mutations in FUS/TLS are shown to abnormally enhance their interaction with SMN and dysregulate its function, including loss of Gems and altered levels of small nuclear RNAs (snRNAs). The same mutants are found to have reduced association with U1-snRNP. Correspondingly, global RNA analysis reveals a mutant-dependent loss of splicing activity, with ALS-linked mutants failing to reverse changes caused by loss of wild-type FUS/TLS. Furthermore, a common FUS/TLS mutant-associated RNA splicing signature is identified in ALS patient fibroblasts. Taken together, these studies establish potentially converging disease mechanisms in ALS and spinal muscular atrophy, with ALS-causative mutants acquiring properties representing both gain (dysregulation of SMN) and loss (reduced RNA processing mediated by U1-snRNP) of function.
Collapse
|
28
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
29
|
|
30
|
Abstract
Arginine methylation is an important posttranslational protein modification that modulates protein function for a wide range of biological processes. PIWI proteins, a subclade of the Argonaute family proteins, contain evolutionarily conserved symmetrical dimethylarginines (sDMAs). It has become increasingly apparent that the sDMAs of PIWI proteins serve as binding elements for TUDOR domain-containing proteins and that sDMA-dependent protein interactions play crucial roles in the biogenesis and function of PIWI-interacting RNAs (piRNAs). We describe a method for detecting PIWI sDMAs and purifying PIWI/piRNA complexes using anti-sDMA antibodies.
Collapse
|
31
|
Ishikawa H, Nobe Y, Izumikawa K, Yoshikawa H, Miyazawa N, Terukina G, Kurokawa N, Taoka M, Yamauchi Y, Nakayama H, Isobe T, Takahashi N. Identification of truncated forms of U1 snRNA reveals a novel RNA degradation pathway during snRNP biogenesis. Nucleic Acids Res 2013; 42:2708-24. [PMID: 24311566 PMCID: PMC3936765 DOI: 10.1093/nar/gkt1271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein (snRNP) plays pivotal roles in pre-mRNA splicing and in regulating mRNA length and isoform expression; however, the mechanism of U1 snRNA quality control remains undetermined. Here, we describe a novel surveillance pathway for U1 snRNP biogenesis. Mass spectrometry-based RNA analysis showed that a small population of SMN complexes contains truncated forms of U1 snRNA (U1-tfs) lacking the Sm-binding site and stem loop 4 but containing a 7-monomethylguanosine 5′ cap and a methylated first adenosine base. U1-tfs form a unique SMN complex, are shunted to processing bodies and have a turnover rate faster than that of mature U1 snRNA. U1-tfs are formed partly from the transcripts of U1 genes and partly from those lacking the 3′ box elements or having defective SL4 coding regions. We propose that U1 snRNP biogenesis is under strict quality control: U1 transcripts are surveyed at the 3′-terminal region and U1-tfs are diverted from the normal U1 snRNP biogenesis pathway.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan, Metabolome Division, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan, Department of Bioengineering, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan and Biomolecular Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hossain M, Sharma S, Korde R, Kanodia S, Chugh M, Rawat K, Malhotra P. Organization of Plasmodium falciparum spliceosomal core complex and role of arginine methylation in its assembly. Malar J 2013; 12:333. [PMID: 24047207 PMCID: PMC3848767 DOI: 10.1186/1475-2875-12-333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Splicing and alternate splicing are the two key biological processes that result in the generation of diverse transcript and protein isoforms in Plasmodium falciparum as well as in other eukaryotic organisms. Not much is known about the organization of splicing machinery and mechanisms in human malaria parasite. Present study reports the organization and assembly of Plasmodium spliceosome Sm core complex. METHODS Presence of all the seven Plasmodium Sm-like proteins in the intra-erythrocytic stages was assessed based on the protein(s) expression analysis using immuno-localization and western blotting. Localization/co-localization studies were performed by immunofluorescence analysis on thin parasite smear using laser scanning confocal microscope. Interaction studies were carried out using yeast two-hybrid analysis and validated by in vitro pull-down assays. PfPRMT5 (arginine methyl transferase) and PfSmD1 interaction analysis was performed by pull-down assays and the interacting proteins were identified by MALDI-TOF spectrometry. RESULTS PfSm proteins are expressed at asexual blood stages of the parasite and show nucleo-cytoplasmic localization. Protein-protein interaction studies showed that PfSm proteins form a heptameric complex, typical of spliceosome core complex as shown in humans. Interaction of PfSMN (survival of motor neuron, tudor domain containing protein) or PfTu-TSN (Tudor domain of Tudor Staphylococcal nuclease) with PfSmD1 proteins was found to be methylation dependent. Co-localization by immunofluorescence and co-immunoprecipitation studies suggested an association between PfPRMT5 and PfSmD1, indicating the role of arginine methylation in assembly of Plasmodium spliceosome complex. CONCLUSIONS Plasmodium Sm-like proteins form a heptameric ring-like structure, although the arrangement of PfSm proteins slightly differs from human splicing machinery. The data shows the interaction of PfSMN with PfSmD1 and this interaction is found to be methylation dependent. PfPRMT5 probably exists as a part of methylosome complex that may function in the cytoplasmic assembly of Sm proteins at asexual blood stages of P. falciparum.
Collapse
Affiliation(s)
- Manzar Hossain
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | | | | | | | |
Collapse
|
33
|
Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U. Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 2013; 49:692-703. [PMID: 23333303 DOI: 10.1016/j.molcel.2012.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/06/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.
Collapse
Affiliation(s)
- Clemens Grimm
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
35
|
Hsu YY, Jong YJ, Tsai HH, Tseng YT, An LM, Lo YC. Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMA-like mice. Br J Pharmacol 2012; 166:1114-26. [PMID: 22220673 DOI: 10.1111/j.1476-5381.2012.01829.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal muscular atrophy (SMA) is a progressive neuromuscular disease. Since disease severity is related to the amount of survival motor neuron (SMN) protein, up-regulated functional SMN protein levels from the SMN2 gene are considered a major SMA drug-discovery strategy. In this study, we investigated the possible effects of triptolide, a diterpene triepoxide purified from Tripterygium wilfordii Hook. F., as a new compound for increasing SMN protein. EXPERIMENTAL APPROACH The effects and mechanisms of triptolide on the production of SMA protein were determined by cell-based assays using the motor neuronal cell line NSC34 and skin fibroblasts from SMA patients. Wild-type (Smn(+/+) SMN2(-/-) , C57BL/6) and SMA-like (Smn(-/-) SMN2) mice were injected with triptolide (0.01 or 0.1 mg·kg(-1) ·day(-1) , i.p.) and their survival rate and level of change in SMN protein in neurons and muscle tissue measured. KEY RESULTS In NSC34 cells and human SMA fibroblasts, pM concentrations of triptolide significantly increased SMN protein expression and the levels of SMN complex component (Gemin2 and Gemin3). In human SMA fibroblasts, triptolide increased SMN-containing nuclear gems and the ratio of full-length transcripts (FL-SMN2) to SMN2 transcripts lacking exon 7 (SMN2Δ7). Furthermore, in SMA-like mice, triptolide significantly increased SMN protein levels in the brain, spinal cord and gastrocnemius muscle. Furthermore, triptolide treatment increased survival and reduced weight loss in SMA-like mice. CONCLUSION AND IMPLICATIONS Triptolide enhanced SMN protein production by promoting SMN2 activation, exon 7 inclusion and increasing nuclear gems, and increased survival in SMA mice, which suggests triptolide might be a potential candidate for SMA therapy.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Wilce J, Vivian J, Wilce M. Oligonucleotide binding proteins: the occurrence of dimer and multimer formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:91-104. [PMID: 22949113 DOI: 10.1007/978-1-4614-3229-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Protein dimers and multimers are often employed by nature for DNA and RNA handling and formation of specific, high-affinity protein-oligonucleotide complexes. The repeating structure of dsDNA lends itself to recognition by multimeric protein complexes that can assemble about the helical structure. In the cases of both DNA and RNA, specific recognition of nucleotide sequences can be achieved by multidomain proteins or protein multimers. Furthermore large multimeric assemblies are utilised for the stable formation of structures such as rings and filaments. Also, the assembly of multimeric structures by interchangeable subunits can add layers of regulation and increase functional complexity. Thus there appear to be many advantages to oligonucleotide interactions that are conferred by dimerisation or multimerisation.
Collapse
Affiliation(s)
- Jackie Wilce
- Department of Biochemistry and Molecular Biology, and School of Biomedical Sciences, Monash Univerity, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
37
|
Murdocca M, Malgieri A, Luchetti A, Saieva L, Dobrowolny G, de Leonibus E, Filareto A, Quitadamo MC, Novelli G, Musarò A, Sangiuolo F. IPLEX administration improves motor neuron survival and ameliorates motor functions in a severe mouse model of spinal muscular atrophy. Mol Med 2012; 18:1076-85. [PMID: 22669476 DOI: 10.2119/molmed.2012.00056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/22/2012] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Satoh M, Ceribelli A, Chan EKL. Common pathways of autoimmune inflammatory myopathies and genetic neuromuscular disorders. Clin Rev Allergy Immunol 2012; 42:16-25. [PMID: 22083460 DOI: 10.1007/s12016-011-8286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been shown that many hereditary motor neuron diseases are caused by mutation of RNA processing enzymes. Survival of motor neuron 1 (SMN1) is well-known as a causative gene for spinal muscular atrophy (SMA) and mutations of glycyl- and tyrosyl-tRNA synthetases are identified as a cause of distal SMA and Charcot-Marie-Tooth disease. Why and how the dysfunction of these ubiquitously expressed genes involved in RNA processing can cause a specific neurological disorder is not well understood. Interestingly, SMN complex has been identified recently as a new target of autoantibodies in polymyositis (PM). Autoantibodies in systemic rheumatic diseases are clinically useful biomarkers associated with a particular diagnosis, subset of a disease, or certain clinical characteristics. Many autoantibodies produced in patients with polymyositis/dermatomyositis (PM/DM) target RNA-protein complexes such as aminoacyl tRNA synthetases. It is interesting to note these same RNA-protein complexes recognized by autoantibodies in PM/DM are also responsible for genetic neuromuscular disease. Certain RNA-protein complexes are also targets of autoantibodies in paraneoplastic neurological disorders. Thus, there are several interesting associations between RNA-processing enzymes and neuromuscular disorders. Although pathogenetic roles of autoantibodies to intracellular antigens are generally considered unlikely, understanding the mechanisms of antigen selection in a particular disease and specific neurological symptoms caused by disruption of ubiquitous RNA-processing enzyme may help identify a common path in genetic neuromuscular disorders and autoimmunity in inflammatory myopathies.
Collapse
Affiliation(s)
- Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610-0221, USA.
| | | | | |
Collapse
|
39
|
Bosio Y, Berto G, Camera P, Bianchi F, Ambrogio C, Claus P, Di Cunto F. PPP4R2 regulates neuronal cell differentiation and survival, functionally cooperating with SMN. Eur J Cell Biol 2012; 91:662-74. [PMID: 22559936 DOI: 10.1016/j.ejcb.2012.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 01/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a human disease caused by reduced levels of the Survival of Motor Neuron (SMN) protein, leading to progressive loss of motor neurons and muscular paralysis. However, it is still not very clear why these cells are specifically sensitive to SMN levels. Therefore, understanding which proteins may functionally interact with SMN in a neuronal context is a very important issue. PPP4R2, a regulatory subunit of the protein phosphatase 4 (PPP4C), was previously identified as a functional interactor of the SMN complex, but has never been studied in neuronal cells. In this report, we show that PPP4R2 displays a very dynamic intracellular localization in mouse and rat neuronal cell lines and in rat primary hippocampal neurons, strongly correlating with differentiation. More importantly, we found that PPP4R2 loss of function impairs the differentiation of the mouse motor-neuronal cell line NSC-34, an effect that can be counteracted by SMN overexpression. In addition, we show that PPP4R2 may specifically protect NSC-34 cells from DNA damage-induced apoptosis and that it is capable to functionally cooperate with SMN in this activity. Our data indicate that PPP4R2 is a SMN partner that may modulate the differentiation and survival of neuronal cells.
Collapse
Affiliation(s)
- Ylenia Bosio
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Chang T, Zheng W, Tsark W, Bates S, Huang H, Lin RJ, Yee JK. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2012; 29:2090-3. [PMID: 21956898 DOI: 10.1002/stem.749] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and is a common genetic cause of infant mortality. The disease is caused by loss of the survival of motoneuron (SMN) protein, resulting in the degeneration of alpha motoneurons in spinal cord and muscular atrophy in the limbs and trunk. One function of SMN involves RNA splicing. It is unclear why a deficiency in a housekeeping function such as RNA splicing causes profound effects only on motoneurons but not on other cell types. One difficulty in studying SMA is the scarcity of patient's samples. The discovery that somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) raises the intriguing possibility of modeling human diseases in vitro. We reported the establishment of five iPSC lines from the fibroblasts of a type 1 SMA patient. Neuronal cultures derived from these SMA iPSC lines exhibited a reduced capacity to form motoneurons and an abnormality in neurite outgrowth. Ectopic SMN expression in these iPSC lines restored normal motoneuron differentiation and rescued the phenotype of delayed neurite outgrowth. These results suggest that the observed abnormalities are indeed caused by SMN deficiency and not by iPSC clonal variability. Further characterization of the cellular and functional deficits in motoneurons derived from these iPSCs may accelerate the exploration of the underlying mechanisms of SMA pathogenesis.
Collapse
Affiliation(s)
- Tammy Chang
- Department of Virology, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Spinal muscular atrophy is a common autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron (SMN1) gene, affecting approximately 1 in 10,000 live births. The disease is characterized by progressive symmetrical muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brainstem nuclei. The disease is classified on the basis of age of onset and clinical course. Two almost identical SMN genes are present on 5q13: the SMN1 gene, which is the spinal muscular atrophy-determining gene, and the SMN2 gene. The homozygous absence of the SMN1 exon 7 has been observed in the majority of patients and is being used as a reliable and sensitive spinal muscular atrophy diagnostic test. Although SMN2 produces less full-length transcript than SMN1, the number of SMN2 copies has been shown to modulate the clinical phenotype. Carrier detection relies on the accurate determination of the SMN1 gene copies. This document follows the outline format of the general Standards and Guidelines for Clinical Laboratories. It is designed to be a checklist for genetic testing professionals who are already familiar with the disease and methods of analysis.
Collapse
|
42
|
Hanson KA, Kim SH, Tibbetts RS. RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:265-85. [PMID: 22028183 DOI: 10.1002/wrna.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are a diverse group of disorders that affect different neuron populations, differ in onset and severity, and can be either inherited or sporadic. One common pathological feature of most of these diseases is the presence of insoluble inclusions in and around neurons, which largely consist of misfolded and aggregated protein. For this reason, neurodegenerative diseases are typically thought to be disorders of aberrant protein processing, in which the cumulative effects of misfolded protein aggregates overwhelm the neuron's proteostatic capacity. However, a growing body of evidence suggests a role for abnormal RNA processing in neurodegenerative disease. The importance of RNA metabolism in disease was highlighted by the discovery of TDP-43 (TAR DNA-binding protein of 43 kDa), an RNA-binding protein (RBP), as a primary component of insoluble aggregates in patients with sporadic amyotrophic lateral sclerosis (ALS). Subsequently, inherited mutations in TDP-43 and the structurally related RBP, FUS/TLS (fused in sarcoma/translated in liposarcoma), were found to cause ALS. These exciting findings have ushered in a new era of ALS research in which the deregulation of RNA metabolism is viewed as a central cause of motor neuron deterioration. In addition, the fact that neuropathologically and anatomically distinct neurodegenerative diseases display altered RNA metabolism suggests that common pathologic mechanisms may underlie many of these disorders.
Collapse
Affiliation(s)
- Keith A Hanson
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
43
|
Ibrahim F, Nakaya T, Mourelatos Z. RNA dysregulation in diseases of motor neurons. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:323-52. [PMID: 22035195 DOI: 10.1146/annurev-pathol-011110-130307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that lead to paralysis and typically carry a dismal prognosis. In children, inherited spinal muscular atrophies are the predominant diseases that affect motor neurons, whereas in adults, amyotrophic lateral sclerosis, which is inherited but mostly sporadic, is the most common MND. In recent years, we have witnessed a revolution in this field, sparked by the discovery of the genes that cause MNDs. Remarkably, at least 10 genes, whose products are either RNA-binding proteins or proteins that function in RNA processing and regulation, cause MNDs and place the dysregulation of RNA pathways at the center of motor neuron degeneration pathogenesis.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G. Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 2011; 146:384-95. [PMID: 21816274 PMCID: PMC3160754 DOI: 10.1016/j.cell.2011.06.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/10/2011] [Accepted: 06/27/2011] [Indexed: 01/10/2023]
Abstract
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5 Å crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.
Collapse
Affiliation(s)
- Rundong Zhang
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int 2011; 2011:163827. [PMID: 22091396 PMCID: PMC3195771 DOI: 10.4061/2011/163827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/12/2011] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.
Collapse
Affiliation(s)
- Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| |
Collapse
|
46
|
Nizzardo M, Nardini M, Ronchi D, Salani S, Donadoni C, Fortunato F, Colciago G, Falcone M, Simone C, Riboldi G, Govoni A, Bresolin N, Comi GP, Corti S. Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Exp Neurol 2011; 229:214-25. [PMID: 21295027 DOI: 10.1016/j.expneurol.2011.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating genetic motoneuron disease leading to infant death. No effective therapy is currently available. It has been suggested that β-lactam antibiotics such as ceftriaxone may offer neuroprotection in motoneuron diseases. Here, we investigate the therapeutic effect of ceftriaxone in a murine model of SMA. Treated animals present a modest, but significant ameliorated neuromuscular phenotype and increased survival, which correlate with protection of neuromuscular units. Whole gene expression profiling in treated mice demonstrates modifications in several genes including those involved in RNA metabolism toward wild-type. The neuroprotective effect seems to be mediated by multiple mechanisms that encompass the increase of the glutamate transporter Glt1, the transcription factor Nrf2, as well as SMN protein. This study provides the first evidence of a potential positive effect of this class of molecules in SMA. Further investigation of analogs with increased and more specific therapeutic effects warrants the development of useful therapies for SMA.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron (SMN1) gene, affecting approximately 1 in 10,000 live births. Even though a specific therapy for SMA is not currently available, a newborn screening test may allow the child to be enrolled in a clinical trial before irreversible neuronal loss occurs and enable patients to obtain more proactive treatments. Until an effective treatment is found to cure or arrest the progression of the disease, prevention of new cases through carrier detection and prenatal diagnosis becomes extremely important. RECENT FINDINGS The correlation between the SMA phenotype and the SMN2 copy number and the demonstration that sufficient SMN protein from SMN2 in transgenic mice can ameliorate the disease has made the SMN2 gene an obvious target that is being modulated in current therapeutic trials. Most recent work, utilizing gene therapy, has also shown a rescue of the phenotype in the mouse model. Since SMA children are often asymptomatic at birth, newborn screening is a means which will allow the implementation of the most early intervention to take place, before the irreversible loss of motor neurons. Since there is no effective cure for SMA presently, prevention through the identification of carriers becomes an important alternative and has recently been initiated. SUMMARY Treatment and prevention of SMA are complementary responses to the scourge presented by SMA. This review first describes the molecular genetics of SMA and then focuses on newborn screening, as a means of ensuring the earliest intervention, and the prevention through population carrier screening.
Collapse
|
48
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
49
|
Prior TW. Spinal muscular atrophy: newborn and carrier screening. Obstet Gynecol Clin North Am 2010; 37:23-36, Table of Contents. [PMID: 20494255 DOI: 10.1016/j.ogc.2010.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinal muscular atrophy (SMA) is a common autosomal-recessive neuromuscular disorder caused by mutations in the survival motor neuron (SMN1) gene, affecting approximately 1 in 10,000 live births. The disease is characterized by progressive symmetric muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brainstem nuclei. The management of SMA involves supportive and preventive strategies. New treatments based on increasing the expression of full-length SMN protein levels from the SMN2 gene are being investigated and may be dependent on early detection of the disorder, before the irreversible loss of motor neurons. This article focuses on the prevention of SMA through population carrier screening and newborn screening as a means of ensuring early intervention for SMA.
Collapse
Affiliation(s)
- Thomas W Prior
- Department of Pathology, The Ohio State University, 125 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Tkacz ID, Gupta SK, Volkov V, Romano M, Haham T, Tulinski P, Lebenthal I, Michaeli S. Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing. J Biol Chem 2010; 285:27982-99. [PMID: 20592024 DOI: 10.1074/jbc.m109.095349] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In trypanosomatids, all mRNAs are processed via trans-splicing, although cis-splicing also occurs. In trans-splicing, a common small exon, the spliced leader (SL), which is derived from a small SL RNA species, is added to all mRNAs. Sm and Lsm proteins are core proteins that bind to U snRNAs and are essential for both these splicing processes. In this study, SmD3- and Lsm3-associated complexes were purified to homogeneity from Leishmania tarentolae. The purified complexes were analyzed by mass spectrometry, and 54 and 39 proteins were purified from SmD3 and Lsm complexes, respectively. Interestingly, among the proteins purified from Lsm3, no mRNA degradation factors were detected, as in Lsm complexes from other eukaryotes. The U1A complex was purified and mass spectrometry analysis identified, in addition to U1 small nuclear ribonucleoprotein (snRNP) proteins, additional co-purified proteins, including the polyadenylation factor CPSF73. Defects observed in cells silenced for U1 snRNP proteins suggest that the U1 snRNP functions exclusively in cis-splicing, although U1A also participates in polyadenylation and affects trans-splicing. The study characterized several trypanosome-specific nuclear factors involved in snRNP biogenesis, whose function was elucidated in Trypanosoma brucei. Conserved factors, such as PRP19, which functions at the heart of every cis-spliceosome, also affect SL RNA modification; GEMIN2, a protein associated with SMN (survival of motor neurons) and implicated in selective association of U snRNA with core Sm proteins in trypanosomes, is a master regulator of snRNP assembly. This study demonstrates the existence of trypanosomatid-specific splicing factors but also that conserved snRNP proteins possess trypanosome-specific functions.
Collapse
Affiliation(s)
- Itai Dov Tkacz
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|