1
|
Htet ZM, Dong KC, Martin A. The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome. Cell Rep 2025; 44:115736. [PMID: 40411784 DOI: 10.1016/j.celrep.2025.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025] Open
Abstract
The 26S proteasome is the major compartmental protease in eukaryotic cells, responsible for the ATP-dependent turnover of obsolete, damaged, or misfolded proteins that are delivered for degradation through attached ubiquitin modifications. Besides targeting substrates to the proteasome, ubiquitin was recently shown to promote degradation initiation by modulating proteasome conformational switching, yet the underlying mechanisms are unknown. Here, we use biochemical, mutational, and single-molecule fluorescence resonance energy transfer (FRET)-based approaches to show that the proteasomal deubiquitinase Rpn11 functions as an allosteric sensor and facilitates the early steps of degradation. After substrate recruitment to the proteasome, ubiquitin binding to Rpn11 interferes with conformation-specific interactions of the ubiquitin receptor subunit Rpn10, thereby stabilizing the proteasome's engagement-competent state and expediting substrate insertion into the ATPase motor for mechanical translocation, unfolding, and Rpn11-mediated deubiquitination. These findings explain how modifications with poly-ubiquitin chains or multiple mono-ubiquitins allosterically promote substrate degradation and allow up to 4-fold faster turnover by the proteasome.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Jin SK, Baek KH. Unraveling the role of deubiquitinating enzymes on cisplatin resistance in several cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189297. [PMID: 40058507 DOI: 10.1016/j.bbcan.2025.189297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The use of platinum-based drugs in cancer treatment is one of the most common methods in chemotherapy. Especially, cisplatin induces cell death by interrupting DNA synthesis by binding to the DNA bases, thereby leading to the apoptosis via multiple pathways. However, the major hurdle in chemotherapy is drug resistance. To overcome drug resistance, the ubiquitin-proteasome system (UPS) has emerged as a potential therapeutic target. The UPS is a pivotal signaling pathway that regulates the majority of cellular proteins by attaching ubiquitin to substrates, leading to proteasomal degradation. Conversely, deubiquitinating enzymes (DUBs) remove tagged ubiquitin from the substrate and inhibit degradation, thereby maintaining proteostasis. Recently, studies have been conducted to identify the substrates of DUBs and investigated the cellular mechanisms, and now the development of therapeutics using DUB inhibitors is in clinical trials. However, the mechanism of the DUB response to cisplatin remains still unclear. In this review, we summarize the research reported on the function of DUBs responding to cisplatin.
Collapse
Affiliation(s)
- Sun-Kyu Jin
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
3
|
Zhang Y, Leung AK, Kang JJ, Sun Y, Wu G, Li L, Sun J, Cheng L, Qiu T, Zhang J, Wierbowski SD, Gupta S, Booth JG, Yu H. A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology. Nat Commun 2025; 16:975. [PMID: 39856048 PMCID: PMC11760531 DOI: 10.1038/s41467-024-54176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/04/2024] [Indexed: 01/27/2025] Open
Abstract
A major goal of cancer biology is to understand the mechanisms driven by somatically acquired mutations. Two distinct methodologies-one analyzing mutation clustering within protein sequences and 3D structures, the other leveraging protein-protein interaction network topology-offer complementary strengths. We present NetFlow3D, a unified, end-to-end 3D structurally-informed protein interaction network propagation framework that maps the multiscale mechanistic effects of mutations. Built upon the Human Protein Structurome, which incorporates the 3D structures of every protein and the binding interfaces of all known protein interactions, NetFlow3D integrates atomic, residue, protein and network-level information: It clusters mutations on 3D protein structures to identify driver mutations and propagates their impacts anisotropically across the protein interaction network, guided by the involved interaction interfaces, to reveal systems-level impacts. Applied to 33 cancer types, NetFlow3D identifies 2 times more 3D clusters and incorporates 8 times more proteins in significantly interconnected network modules compared to traditional methods.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, 14853, NY, USA
| | - Alden K Leung
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Yu Sun
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Guanxi Wu
- College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, NY, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jiayang Sun
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Lily Cheng
- Department of Science and Technology Studies, Cornell University, Ithaca, 14853, NY, USA
| | - Tian Qiu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Junke Zhang
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Shayne D Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Shagun Gupta
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - James G Booth
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA
- Department of Statistics and Data Science, Cornell University, Ithaca, 14853, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
4
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
6
|
Htet ZM, Dong KC, Martin A. The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620116. [PMID: 39484543 PMCID: PMC11527175 DOI: 10.1101/2024.10.24.620116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The 26S proteasome is the major compartmental protease in eukaryotic cells, responsible for the ATP-dependent turnover of obsolete, damaged, or misfolded proteins that are delivered for degradation through attached ubiquitin modifications. In addition to targeting substrates to the proteasome, ubiquitin was recently shown to promote degradation initiation by directly modulating the conformational switching of the proteasome, yet the underlying mechanisms are unknown. Here, we used biochemical, mutational, and single-molecule FRET-based approaches to show that the proteasomal deubiquitinase Rpn11 functions as an allosteric sensor and facilitates the early steps of degradation. After substrate recruitment to the proteasome, ubiquitin binding to Rpn11 interferes with conformation-specific interactions of the ubiquitin-receptor subunit Rpn10, thereby stabilizing the engagement-competent state of the proteasome and expediting substrate insertion into the ATPase motor for mechanical translocation, unfolding, and Rpn11-mediated deubiquitination. These findings explain how modifications with poly-ubiquitin chains or multiple mono-ubiquitins allosterically promote substrate degradation and allow up to four-fold faster turnover by the proteasome.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
- Equal contributions
| | - Ken C. Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
- Equal contributions
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Zhou QX, Tian SY, Liu XN, Xiang SP, Lin XJ, Tan F, Mou YN. Research progress of ubiquitin and ubiquitin-like signaling in Toxoplasma gondii. Acta Trop 2024; 257:107283. [PMID: 38955322 DOI: 10.1016/j.actatropica.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.
Collapse
Affiliation(s)
- Qi-Xin Zhou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Si-Yu Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao-Na Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Shi-Peng Xiang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xue-Jing Lin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Ya-Ni Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| |
Collapse
|
8
|
Zhang Y, Leung AK, Kang JJ, Sun Y, Wu G, Li L, Sun J, Cheng L, Qiu T, Zhang J, Wierbowski S, Gupta S, Booth J, Yu H. A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.06.531441. [PMID: 36945530 PMCID: PMC10028849 DOI: 10.1101/2023.03.06.531441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A major goal of cancer biology is to understand the mechanisms underlying tumorigenesis driven by somatically acquired mutations. Two distinct types of computational methodologies have emerged: one focuses on analyzing clustering of mutations within protein sequences and 3D structures, while the other characterizes mutations by leveraging the topology of protein-protein interaction network. Their insights are largely non-overlapping, offering complementary strengths. Here, we established a unified, end-to-end 3D structurally-informed protein interaction network propagation framework, NetFlow3D, that systematically maps the multiscale mechanistic effects of somatic mutations in cancer. The establishment of NetFlow3D hinges upon the Human Protein Structurome, a comprehensive repository we compiled that incorporates the 3D structures of every single protein as well as the binding interfaces of all known protein interactions in humans. NetFlow3D leverages the Structurome to integrate information across atomic, residue, protein and network levels: It conducts 3D clustering of mutations across atomic and residue levels on protein structures to identify potential driver mutations. It then anisotropically propagates their impacts across the protein interaction network, with propagation guided by the specific 3D structural interfaces involved, to identify significantly interconnected network "modules", thereby uncovering key biological processes underlying disease etiology. Applied to 1,038,899 somatic protein-altering mutations in 9,946 TCGA tumors across 33 cancer types, NetFlow3D identified 1,4444 significant 3D clusters throughout the Human Protein Structurome, of which ~55% would not have been found if using only experimentally-determined structures. It then identified 26 significantly interconnected modules that encompass ~8-fold more proteins than applying standard network analyses. NetFlow3D and our pan-cancer results can be accessed from http://netflow3d.yulab.org.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, 14853, USA
| | - Alden K. Leung
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Yu Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Guanxi Wu
- College of Agriculture and Life Sciences, Cornell University; Ithaca, 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Jiayang Sun
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
| | - Lily Cheng
- Department of Science and Technology Studies, Cornell University; Ithaca, 14853, USA
| | - Tian Qiu
- School of Electrical and Computer Engineering, Cornell University; Ithaca, 14853, USA
| | - Junke Zhang
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| | - James Booth
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Department of Statistics and Data Science, Cornell University; Ithaca, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University; Ithaca, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University; Ithaca, 14853, USA
| |
Collapse
|
9
|
Immler F, Schneider T, Kovermann M. Targeted Preparation and NMR Spectroscopic Characterization of Lys11-Linked Ubiquitin Trimers. Chembiochem 2024; 25:e202300670. [PMID: 37983597 DOI: 10.1002/cbic.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ubiquitylation refers to the attachment of mono- or poly-ubiquitin molecules to a substrate protein. To shield ubiquitin chains against potential hydrolysis, a facile, click-chemistry based approach was recently established for the generation of site-specifically conjugated ubiquitin dimers relying on triazole-linkage. Here, the preparation of such ubiquitin chains was advanced by the generation of homotypic Lys11-linked ubiquitin trimers considering an isotopic labeling scheme in a moiety-wise manner. The structural and dynamical impact on the ubiquitin unit at proximal, central, or distal position that is potentially invoked by the respective other two moieties was systematically probed by heteronuclear high-resolution NMR spectroscopic approaches. As a result, conjugating a third ubiquitin moiety to the proximal or distal site of a ubiquitin dimer does not alter structural and dynamical characteristics as it has been seen for ubiquitin dimers. This observation suggests that recognition of a homotypically assembled ubiquitin chain by a potential substrate is primarily done by screening the length of a ubiquitin chain rather than relying on subtle changes in structure or dynamic properties of single ubiquitin moieties composing the chain.
Collapse
Affiliation(s)
- Fabian Immler
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Schneider
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
10
|
Xia J, Yang Y, Chen X, Song K, Ma G, Yang Y, Yao C, Du A. An apicoplast-localized deubiquitinase contributes to the cell growth and apicoplast homeostasis of Toxoplasma gondii. Vet Res 2024; 55:10. [PMID: 38233899 PMCID: PMC10795397 DOI: 10.1186/s13567-023-01261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.
Collapse
Affiliation(s)
- Jie Xia
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyue Song
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis.
| | - Aifang Du
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
11
|
Dagar G, Kumar R, Yadav KK, Singh M, Pandita TK. Ubiquitination and deubiquitination: Implications on cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194979. [PMID: 37633647 DOI: 10.1016/j.bbagrm.2023.194979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitin proteasomal system (UPS) represents a highly regulated protein degradation pathway essential for maintaining cellular homeostasis. This system plays a critical role in several cellular processes, which include DNA damage repair, cell cycle checkpoint control, and immune response regulation. Recently, the UPS has emerged as a promising target for cancer therapeutics due to its involvement in oncogenesis and tumor progression. Here we aim to summarize the key aspects of the UPS and its significance in cancer therapeutics. We begin by elucidating the fundamental components of the UPS, highlighting the role of ubiquitin, E1-E3 ligases, and the proteasome in protein degradation. Furthermore, we discuss the intricate process of ubiquitination and proteasomal degradation, emphasizing the specificity and selectivity achieved through various signaling pathways. The dysregulation of the UPS has been implicated in cancer development and progression. Aberrant ubiquitin-mediated degradation of key regulatory proteins, such as tumor suppressors and oncoproteins, can lead to uncontrolled cell proliferation, evasion of apoptosis, and metastasis. We outline the pivotal role of the UPS in modulating crucial oncogenic pathways, including the regulation of cyclins, transcription factors, Replication stress components and DNA damage response. The increasing recognition of the UPS as a target for cancer therapeutics has spurred the development of small molecules, peptides, and proteasome inhibitors with the potential to restore cellular balance and disrupt tumor growth. We provide an overview of current therapeutic strategies aimed at exploiting the UPS, including the use of proteasome inhibitors, deubiquitinating enzyme inhibitors, and novel E3 ligase modulators. We further discuss novel emerging strategies for the development of next-generation drugs that target proteasome inhibitors. Exploiting the UPS for cancer therapeutics offers promising avenues for developing innovative and effective treatment strategies, providing hope for improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA; School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX 77030, USA.
| | - Mayank Singh
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
13
|
Liang P, Zhang J, Wang B. Emerging Roles of Ubiquitination in Biomolecular Condensates. Cells 2023; 12:2329. [PMID: 37759550 PMCID: PMC10527650 DOI: 10.3390/cells12182329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
14
|
Zou X, Yu H, Li Q. Genome-wide identification and transcriptome-based expression profiling of E2 gene family: Implication for potential roles in gonad development of Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101108. [PMID: 37418813 DOI: 10.1016/j.cbd.2023.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
In this study, we investigated the role of E2 ubiquitin conjugating enzymes (E2) in the Pacific oyster Crassostrea gigas, with a focus on their involvement in gonad development. We identified 34 E2 genes clustered into nine subgroups and 24 subfamilies. The gene structure and intron-exon location were conserved within the same subfamily, but motif variation suggested functional diversity. Tissue transcriptome analyses revealed that most E2 genes were broadly expressed, with UBE2CL showing specific expression in the female gonad. Expression profiling of E2 genes during early embryo-larvae development stages suggested that five E2 genes were highly expressed in early embryo development, indicating their involvement in cell division processes. Furthermore, by profiling the expression of E2 genes in different gonadal developmental stages, we observed a gradual increase in expression for four genes during gametogenesis, with significantly higher expression in the female gonad at the maturation stage. Similarly, five E2 genes displayed elevated expression levels in the male gonad at the maturation stage, indicating their crucial roles in gonadal development and gametogenesis. Our study provides valuable insights into the potential functions of the E2 gene family in C. gigas, shedding light on the molecular mechanisms underlying gonad development in oysters.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
15
|
Han M, Guo Y, Li Y, Zeng Q, Zhu W, Jiang J. SMURF2 facilitates ubiquitin-mediated degradation of ID2 to attenuate lung cancer cell proliferation. Int J Biol Sci 2023; 19:3324-3340. [PMID: 37497010 PMCID: PMC10367561 DOI: 10.7150/ijbs.80979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/10/2023] [Indexed: 07/28/2023] Open
Abstract
SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) functions as either a tumor promoter or tumor suppressor in several tumors. However, the detailed effect of SMURF2 on non-small cell lung cancer has not been fully understood. In this study, SMURF2 expression and its diagnostic value were analyzed. Co-Immunoprecipitation (Co-IP), proximity ligation assay (PLA), chromatin immunoprecipitation (ChIP) and nude mice tumor-bearing model were applied to further clarify the role of SMURF2 in lung cancer. SMURF2 expression was reduced in the tumor tissues of patients with NSCLC and high SMURF2 expression was significantly correlated with favorable outcomes. Furthermore, the overexpression of SMURF2 significantly inhibited lung cancer cell progression. Mechanistically, SMURF2 interacted with inhibitor of DNA binding 2 (ID2), subsequently promoting the poly-ubiquitination and degradation of ID2 through the ubiquitin-proteasome pathway. Downregulated ID2 in lung cells dissociates endogenous transcription factor E2A, a positive regulator of the cyclin-dependent kinase inhibitor p21, and finally induces G1/S arrest in lung cancer cells. This study revealed that the manipulation of ID2 via SMURF2 may control tumor progression and contribute to the development of novel targeted antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianli Jiang
- ✉ Corresponding author: Jianli Jiang, National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Liu X, Xu J, Shen B, Xu J, Jiang J. USP33 promotes pancreatic cancer malignant phenotype through the regulation of TGFBR2/TGFβ signaling pathway. Cell Death Dis 2023; 14:362. [PMID: 37322017 PMCID: PMC10272277 DOI: 10.1038/s41419-023-05871-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer (PC) ranked fourth among cancer-related death worldwide with a survival rate less than 5%. The abnormal proliferation and distant metastasis are major obstacles for the diagnosis and treatment of pancreatic cancer, therefore, it is urgent for researchers to uncover the molecular mechanisms underlying the PC proliferation and metastasis. In current study, we found that USP33, a member of deubiquitinating enzyme family, was upregulated among PC samples and cells, meanwhile, the high expression of USP33 correlated with poor prognosis of patients. Function experiments revealed that USP33 overexpression promoted the proliferation, migration and invasion of PC cells while the inhibition of USP33 expression in PC cells exhibited the opposite effect. The mass spectrum and luciferase complementation assay screened TGFBR2 as the potential binding protein of USP33. Mechanistically, USP33 triggered the deubiquitination of TGFBR2 and prevented its degradation by lysosome, therefore promoted TGFBR2 accumulation in cell membrane and eventually contributed to the sustained activation of TGF-β signaling. Moreover, our results revealed that the activation of TGF-β targeted gene ZEB1 promoted the transcription of USP33. In conclusion, our study found that USP33 contributed to the proliferation and metastasis of pancreatic cancer through a positive feedback loop with TGF-β signaling pathway. Moreover, this study suggested that USP33 may serve as a potential prognostic and therapeutic target in PC.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jichuan Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102249 PMCID: PMC10363768 DOI: 10.1111/pbi.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boling Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Min Y, Park HB, Baek KH, Hwang S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes (Basel) 2023; 14:genes14040886. [PMID: 37107644 PMCID: PMC10137459 DOI: 10.3390/genes14040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.
Collapse
Affiliation(s)
- Yosuk Min
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi-do, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
20
|
Jiang W, Li X, Xu H, Gu X, Li S, Zhu L, Lu J, Duan X, Li W, Fang M. UBL7 enhances antiviral innate immunity by promoting Lys27-linked polyubiquitination of MAVS. Cell Rep 2023; 42:112272. [PMID: 36943869 DOI: 10.1016/j.celrep.2023.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
RNA virus infection usually triggers a range of host immune responses, including the induction of proinflammatory cytokines, interferons, and interferon-stimulated genes (ISGs). Here, we report that UBL7, a ubiquitin-like protein, is upregulated during RNA virus infection and induced by type I interferon as an ISG. UBL7-deficient mice exhibit increased susceptibility to viral infection due to attenuated antiviral innate immunity. UBL7 enhances innate immune response to viral infection by promoting the K27-linked polyubiquitination of MAVS. UBL7 interacts with TRIM21, an E3 ubiquitin ligase of MAVS, and promotes the combination of TRIM21 with MAVS in a dose-dependent manner, facilitating the K27-linked polyubiquitination of MAVS and recruiting of TBK1 to enhance the IFN signaling pathway. Moreover, UBL7 has a broad-spectrum antiviral function as an immunomodulatory adaptor protein. Therefore, UBL7 positively regulates innate antiviral signaling and promotes positive feedback to enhance and amplify the antiviral response.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; International College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Fu Y, Jia X, Yuan J, Yang Y, Zhang T, Yu Q, Zhou J, Wang T. Fam72a functions as a cell-cycle-controlled gene during proliferation and antagonizes apoptosis through reprogramming PP2A substrates. Dev Cell 2023; 58:398-415.e7. [PMID: 36868233 DOI: 10.1016/j.devcel.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
The cell cycle is key to life. After decades of research, it is unclear whether any parts of this process have yet to be identified. Fam72a is a poorly characterized gene and is evolutionarily conserved across multicellular organisms. Here, we have found that Fam72a is a cell-cycle-regulated gene that is transcriptionally and post-transcriptionally regulated by FoxM1 and APC/C, respectively. Functionally, Fam72a directly binds to tubulin and both the Aα and B56 subunits of PP2A-B56 to modulate tubulin and Mcl1 phosphorylation, which in turn affects the progression of the cell cycle and signaling of apoptosis. Moreover, Fam72a is involved in early responses to chemotherapy, and it efficiently antagonizes various anticancer compounds such as CDK and Bcl2 inhibitors. Thus, Fam72a switches the tumor-suppressive PP2A to be oncogenic by reprogramming its substrates. These findings identify a regulatory axis of PP2A and a protein member in the cell cycle and tumorigenesis regulatory network in human cells.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofan Jia
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinwei Yuan
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuting Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Teng Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiujing Yu
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
22
|
Liu W, Tang X, Fu X, Zhang H, Zhu C, Zhang N, Si H. Functional Characterization of Potato UBC13- UEV1s Genes Required for Ubiquitin Lys63 Chain to Polyubiquitination. Int J Mol Sci 2023; 24:ijms24032412. [PMID: 36768743 PMCID: PMC9917286 DOI: 10.3390/ijms24032412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.
Collapse
Affiliation(s)
- Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunlan Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
23
|
Yang Q, Lu Y, Shangguan J, Shu X. PSMA1 mediates tumor progression and poor prognosis of gastric carcinoma by deubiquitinating and stabilizing TAZ. Cell Death Dis 2022; 13:989. [PMID: 36424389 PMCID: PMC9691733 DOI: 10.1038/s41419-022-05417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
The deubiquitinating enzyme family in tumor progression play important role in intracellular protein degradation. The proteasome subunit alpha type 1 (PSMA1) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMA1 in gastric cancer (GC) progression and the underlying mechanisms. The expression of PSMA1 in human GC samples and GC cell lines was examined by western blot analysis, real-time PCR, immunohistochemistry (IHC), and in vitro ubiquitination assays and established a xenograft mouse model. We found that PSMA1 was upregulated in GC and promoted proliferation, migration and invasion in GC cells. Herein, we report transcriptional co-activator with PDZ-binding motif (TAZ) was a downstream gene of PSMA1. Mechanistically, PSMA1 directly interacted with and stabilized TAZ via deubiquitination in GC. Furthermore, we found that TAZ was the essential mediator of PSMA1-modulated oncogenic activity in vitro and in vivo. Examination of clinical samples confirmed that elevated mediators of PSMA1, concomitant with increased TAZ abundance, correlate with human GC progression. These data suggested that PSMA1 promotes GC progression and proliferation by deubiquitinating TAZ. PSMA1 promotes GC progression and proliferation regarding PSMA1-mediated deubiquitinating enzyme activity and suggest potential therapeutic targets for GC management.
Collapse
Affiliation(s)
- Qinyu Yang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfang Shangguan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
24
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
25
|
Regulation of ATR-CHK1 signaling by ubiquitination of CLASPIN. Biochem Soc Trans 2022; 50:1471-1480. [PMID: 36196914 DOI: 10.1042/bst20220729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
DNA replication forks are frequently forced into stalling by persistent DNA aberrations generated from endogenous or exogenous insults. Stalled replication forks are catastrophic for genome integrity and cell survival if not immediately stabilized. The ataxia-telangiectasia and RAD3-related kinase (ATR)-CLASPIN-checkpoint kinase 1 (CHK1) signaling cascade is a pivotal mechanism that initiates cell-cycle checkpoints and stabilizes stalled replication forks, assuring the faithful duplication of genomic information before entry into mitosis. The timely recovery of checkpoints after stressors are resolved is also crucial for normal cell proliferation. The precise activation and inactivation of ATR-CHK1 signaling are usually efficiently regulated by turnover and the cellular re-localization of the adaptor protein CLASPIN. The ubiquitination-proteasome-mediated degradation of CLASPIN, driven by APC/CCDH1 and SCFβTrCP, results in a cell-cycle-dependent fluctuation pattern of CLASPIN levels, with peak levels seen in S/G2 phase when it functions in the DNA replisome or as an adaptor protein in ATR-CHK1 signaling under replication stress. Deubiquitination mediated by a series of ubiquitin-specific protease family proteins releases CLASPIN from proteasome-dependent destruction and activates the ATR-CHK1 checkpoint to overcome replication stress. Moreover, the non-proteolytic ubiquitination of CLASPIN also affects CHK1 activation by regulating CLASPIN localization. In this review, we discuss the functions of CLASPIN ubiquitination with specific linkage types in the regulation of the ATR-CHK1 signaling pathway. Research in this area is progressing at pace and provides promising chemotherapeutic targets.
Collapse
|
26
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Lin Z, Nie H, Zhang Y, Yin Z, Yan X. Genome-wide identification and analysis of HECT E3 ubiquitin ligase gene family in Ruditapes philippinarum and their involvement in the response to heat stress and Vibrio anguillarum infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101012. [PMID: 35849989 DOI: 10.1016/j.cbd.2022.101012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
E3 ubiquitin ligase (E3s) plays an important role in ubiquitin proteasome pathway, proteins containing homologous E6-AP carboxyl terminus (HECT) domains. However, the role of HECT E3 ubiquitin ligase in mollusk was rarely explored. In this study, we performed a genome-wide analysis of the HECT domain-containing gene in Ruditapes philippinarum to identify and predict the structural and functional characterization of HECT genes in response to abiotic and biotic stress. A total of sixteen members of HECT gene family were identified and analyzed for the gene structure, phylogenetic relation, three-dimensional structure, protein interaction network, and expression patterns. Experimental results demonstrated that Rph.HUWE1, Rph.HECTD1, Rph.Ubr5 were significantly up-regulated in response to heat stress and bacterial challenge. Taken together, our data provide insights into the potential function of HECT E3 ligase in heat stress and Vibrio anguillarum infection.
Collapse
Affiliation(s)
- Zihan Lin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
28
|
The role of K63-linked polyubiquitin in several types of autophagy. Biol Futur 2022; 73:137-148. [DOI: 10.1007/s42977-022-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
AbstractLysosomal-dependent self-degradative (autophagic) mechanisms are essential for the maintenance of normal homeostasis in all eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified, based on how the cellular self material can incorporate into the lysosomal lumen. Ubiquitination, a well-known and frequently occurred posttranslational modification has essential role in all cell biological processes, thus in autophagy too. The second most common type of polyubiquitin chain is the K63-linked polyubiquitin, which strongly connects to some self-degradative mechanisms in the cells. In this review, we discuss the role of this type of polyubiquitin pattern in numerous autophagic processes.
Collapse
|
29
|
Veggiani G, Yates BP, Martyn GD, Manczyk N, Singer AU, Kurinov I, Sicheri F, Sidhu SS. Panel of Engineered Ubiquitin Variants Targeting the Family of Human Ubiquitin Interacting Motifs. ACS Chem Biol 2022; 17:941-956. [PMID: 35385646 PMCID: PMC9305627 DOI: 10.1021/acschembio.2c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub)-binding domains embedded in intracellular proteins act as readers of the complex Ub code and contribute to regulation of numerous eukaryotic processes. Ub-interacting motifs (UIMs) are short α-helical modular recognition elements whose role in controlling proteostasis and signal transduction has been poorly investigated. Moreover, impaired or aberrant activity of UIM-containing proteins has been implicated in numerous diseases, but targeting modular recognition elements in proteins remains a major challenge. To overcome this limitation, we developed Ub variants (UbVs) that bind to 42 UIMs in the human proteome with high affinity and specificity. Structural analysis of a UbV:UIM complex revealed the molecular determinants of enhanced affinity and specificity. Furthermore, we showed that a UbV targeting a UIM in the cancer-associated Ub-specific protease 28 potently inhibited catalytic activity. Our work demonstrates the versatility of UbVs to target short α-helical Ub receptors with high affinity and specificity. Moreover, the UbVs provide a toolkit to investigate the role of UIMs in regulating and transducing Ub signals and establish a general strategy for the systematic development of probes for Ub-binding domains.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Bradley P. Yates
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Gregory D. Martyn
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Noah Manczyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alex U. Singer
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, NE-CAT, Cornell University, Argonne, Illinois 60439, United States
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
30
|
Li J, Zhang N, Li M, Hong T, Meng W, Ouyang T. The Emerging Role of OTUB2 in Diseases: From Cell Signaling Pathway to Physiological Function. Front Cell Dev Biol 2022; 10:820781. [PMID: 35309903 PMCID: PMC8926145 DOI: 10.3389/fcell.2022.820781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein Otubain2 (OTUB2) was a functional cysteine protease in the OTU family with deubiquitinase activity. In recent years, with the wide application of molecular biology techniques, molecular mechanism regulation at multiple levels of cell signaling pathways has been gradually known, such as ubiquitin-mediated protein degradation and phosphorylation-mediated protein activation. OTUB2 is involved in the deubiquitination of many key proteins in different cell signaling pathways, and the effect of OTUB2 on human health or disease is not clear. OTUB2 is likely to cause cancer and other malignant diseases while maintaining normal human development and physiological function. Therefore, it is of great value to comprehensively understand the regulatory mechanism of OTUB2 and regard it as a target for the treatment of diseases. This review makes a general description and appropriate analysis of OTUB2's regulation in different cell signaling pathways, and connects OTUB2 with cancer from the research hotspot perspective of DNA damage repair and immunity, laying the theoretical foundation for future research.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of the Second Clinical Medical College of Nanchang University, Jiangxi, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
31
|
Ning S, Luo L, Yu B, Mai D, Wang F. Structures, functions, and inhibitors of LUBAC and its related diseases. J Leukoc Biol 2022; 112:799-811. [PMID: 35266190 DOI: 10.1002/jlb.3mr0222-508r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is a reversible posttranslational modification in which ubiquitin is covalently attached to substrates at catalysis by E1, E2, and E3 enzymes. As the only E3 ligase for assembling linear ubiquitin chains in animals, the LUBAC complex exerts an essential role in the wide variety of cellular activities. Recent advances in the LUBAC complex, including structure, physiology, and correlation with malignant diseases, have enabled the discovery of potent inhibitors to treat immune-related diseases and cancer brought by LUBAC complex dysfunction. In this review, we summarize the current progress on the structures, physiologic functions, inhibitors of LUBAC, and its potential role in immune diseases, tumors, and other diseases, providing the theoretical basis for therapy of related diseases targeting the LUBAC complex.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Luo
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dina Mai
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
32
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
33
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
34
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
Reber JM, Mangerich A. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Res 2021; 49:8432-8448. [PMID: 34302489 PMCID: PMC8421145 DOI: 10.1093/nar/gkab618] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a multifaceted post-translational modification, carried out by poly(ADP-ribosyl)transferases (poly-ARTs, PARPs), which play essential roles in (patho-) physiology, as well as cancer therapy. Using NAD+ as a substrate, acceptors, such as proteins and nucleic acids, can be modified with either single ADP-ribose units or polymers, varying considerably in length and branching. Recently, the importance of PAR structural heterogeneity with regards to chain length and branching came into focus. Here, we provide a concise overview on the current knowledge of the biochemical and physiological significance of such differently structured PAR. There is increasing evidence revealing that PAR's structural diversity influences the binding characteristics of its readers, PAR catabolism, and the dynamics of biomolecular condensates. Thereby, it shapes various cellular processes, such as DNA damage response and cell cycle regulation. Contrary to the knowledge on the consequences of PAR's structural diversity, insight into its determinants is just emerging, pointing to specific roles of different PARP members and accessory factors. In the future, it will be interesting to study the interplay with other post-translational modifications, the contribution of natural PARP variants, and the regulatory role of accessory molecules. This has the exciting potential for new therapeutic approaches, with the targeted modulation and tuning of PARPs' enzymatic functions, rather than their complete inhibition, as a central premise.
Collapse
Affiliation(s)
- Julia M Reber
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| |
Collapse
|
36
|
Boughton AJ, Liu L, Lavy T, Kleifeld O, Fushman D. A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1. J Biol Chem 2021; 297:101052. [PMID: 34364874 PMCID: PMC8405992 DOI: 10.1016/j.jbc.2021.101052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The ubiquitin (Ub)–proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy—in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent-exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub–proteasome system.
Collapse
Affiliation(s)
- Andrew J Boughton
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Leonard Liu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
37
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
38
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Gui W, Davidson GA, Zhuang Z. Chemical methods for protein site-specific ubiquitination. RSC Chem Biol 2021; 2:450-467. [PMID: 34381999 PMCID: PMC8323803 DOI: 10.1039/d0cb00215a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is an important protein post-translational modification regulating many cellular processes in eukaryotes. Ubiquitination is catalyzed by a three-enzyme cascade resulting in the conjugation of the C-terminal carboxylate of ubiquitin (Ub) to the ε-amino group of a lysine residue in the acceptor protein via an isopeptide bond. In vitro enzymatic ubiquitination utilizing Ub ligases has been successfully employed to generate Ub dimers and polymers. However, limitations of the enzymatic approach exist, particularly due to the requirement of specific Ub ligase for any given target protein and the low catalytic efficiency of the Ub ligase. To achieve an in-depth understanding of the molecular mechanism of Ub signaling, new methods are needed to generate mono- and poly-ubiquitinated proteins at a specific site with defined polyubiquitin chain linkage and length. Chemical methods offer an attractive solution to the above-described challenges. In this review, we summarize the recently developed chemical methods for generating ubiquitinated proteins using synthetic and semisynthetic approaches. These new tools and approaches, as an important part of the Ub toolbox, are crucial to our understanding and exploitation of the Ub system for novel therapeutics.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry and Biochemistry, University of Delaware 214A Drake Hall Newark DE 19716 USA
| | - Gregory A Davidson
- Department of Chemistry and Biochemistry, University of Delaware 214A Drake Hall Newark DE 19716 USA
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware 214A Drake Hall Newark DE 19716 USA
| |
Collapse
|
40
|
Selvaraju S, Ramya L, Parthipan S, Swathi D, Binsila BK, Kolte AP. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res 2021; 385:207-222. [PMID: 33783607 DOI: 10.1007/s00441-021-03443-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Deciphering sperm transcriptome is the key to understanding the molecular mechanisms governing peri-fertilization, embryonic development, and pregnancy establishment. This study aimed to profile sperm transcriptome to identify signature transcripts regulating male fertility. Semen samples were collected from 47 bulls with varied fertility rates. The sperm total RNA was isolated (n = 8) and subjected to transcriptome sequencing. Based on the expression pattern obtained from RNA profiling, the bulls were grouped (p = 0.03) into high-fertile and sub-fertile, and signature transcripts controlling sperm functions and fertility were identified. The results were validated using the OMIM database, qPCR, and sperm function tests. The sperm contains 1100 to 1700 intact transcripts, of which BCL2L11 and CAPZA3 were abundant and associated (p < 0.05) with spermatogenesis and post-embryonic organ morphogenesis. The upregulated genes in the acrosome integrity and functional membrane integrity groups had a close association with the fertility rate. The biological functions of these upregulated genes (p < 0.05) in the high-fertile bulls were associated with spermatogenesis (AFF4 and BRIP1), sperm motility (AK6 and ATP6V1G3), capacitation and zona binding (AGFG1), embryo development (TCF7 and AKIRIN2), and placental development (KRT19). The transcripts involved in pathways regulating embryonic development such as translation (EEF1B2 and MTIF3, p = 8.87E-05) and nonsense-mediated decay (RPL23 and RPL7A, p = 5.01E-27) were upregulated in high-fertile bulls. The identified transcripts may significantly impact oocyte function, embryogenesis, trophectoderm development, and pregnancy establishment. In addition, the study also reveals that the genes governing sperm functional membrane integrity and acrosome integrity have a prospective effect on male fertility.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
41
|
Zhang S, Sun Y. Mutual inactivation of two RING-finger-type E3 ubiquitin ligases during cell cycle progression. Mol Cell Oncol 2021; 8:1837582. [PMID: 33553599 DOI: 10.1080/23723556.2020.1837582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CRL and APC/C belong to the RING-finger-type E3 ligases, and both play important roles in cell cycle regulation. Recently, we found that SAG, a RING component of CRL, acts as an endogenous inhibitor of APC/C by competing with APC2 for E2s binding; while APC/CCDH1 targets SAG for ubiquitylation and degradation at G1 phase. The negative crosstalk between these two E3s ensures the orderly cell cycle progression.
Collapse
Affiliation(s)
- Shizhen Zhang
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Abstract
Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.
Collapse
|
43
|
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol Psychiatry 2021; 26:247-264. [PMID: 32709994 PMCID: PMC9229342 DOI: 10.1038/s41380-020-0849-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.
Collapse
|
44
|
Sun HL, Zhu AC, Gao Y, Terajima H, Fei Q, Liu S, Zhang L, Zhang Z, Harada BT, He YY, Bissonnette MB, Hung MC, He C. Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m 6A Methylation. Mol Cell 2020; 80:633-647.e7. [PMID: 33217317 DOI: 10.1016/j.molcel.2020.10.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/31/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA modification and is installed by the METTL3-METTL14-WTAP methyltransferase complex. Although the importance of m6A methylation in mRNA metabolism has been well documented recently, regulation of the m6A machinery remains obscure. Through a genome-wide CRISPR screen, we identify the ERK pathway and USP5 as positive regulators of the m6A deposition. We find that ERK phosphorylates METTL3 at S43/S50/S525 and WTAP at S306/S341, followed by deubiquitination by USP5, resulting in stabilization of the m6A methyltransferase complex. Lack of METTL3/WTAP phosphorylation reduces decay of m6A-labeled pluripotent factor transcripts and traps mouse embryonic stem cells in the pluripotent state. The same phosphorylation can also be found in ERK-activated human cancer cells and contribute to tumorigenesis. Our study reveals an unrecognized function of ERK in regulating m6A methylation.
Collapse
Affiliation(s)
- Hui-Lung Sun
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Allen C Zhu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hideki Terajima
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Linda Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan T Harada
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Marc B Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Blount JR, Johnson SL, Todi SV. Unanchored Ubiquitin Chains, Revisited. Front Cell Dev Biol 2020; 8:582361. [PMID: 33195227 PMCID: PMC7659471 DOI: 10.3389/fcell.2020.582361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because of its myriad post-translational effects that control normal cellular processes and are implicated in various diseases. By being covalently conjugated onto other proteins, ubiquitin changes their interaction landscape - fostering new interactions as well as inhibiting others - and ultimately deciding the fate of its substrates and controlling pathways that span most cell physiology. Ubiquitin can be attached onto other proteins as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the types of poly-ubiquitin species generated are ones detached from another substrate - comprising solely ubiquitin as their constituent - referred to as unanchored, or free chains. Considered to be toxic byproducts, these species have recently emerged to have specific physiological functions in immune pathways and during cell stress. Free chains also do not appear to be detrimental to multi-cellular organisms; they can be active members of the ubiquitination process, rather than corollary species awaiting disassembly into mono-ubiquitin. Here, we summarize past and recent studies on unanchored ubiquitin chains, paying special attention to their emerging roles as second messengers in several signaling pathways. These investigations paint complex and flexible outcomes for free ubiquitin chains, and present a revised model of unanchored poly-ubiquitin biology that is in need of additional investigation.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
47
|
Abstract
Ubiquitination is a modification after protein transcription that plays a vital role in maintaining the homeostasis of the cellular environment. The Homologous to E6AP C-terminus (HECT) family E3 ubiquitin ligases are a kind of E3 ubiquitin ligases with a C-terminal HECT domain that mediates the binding of ubiquitin to substrate proteins and a variable-length N-terminal extension. HECT-ubiquitinated ligases can be divided into three categories: NEDD4 superfamily, HERC superfamily, and other HECT superfamilies. HECT ubiquitin ligase plays an essential role in the development of many human diseases. In this review, we focus on the physiological and pathological processes involved in oxidative stress and the role of E3 ubiquitin ligase of the HECT family.
Collapse
|
48
|
Shi W, Feng L, Dong S, Ning Z, Hua Y, Liu L, Chen Z, Meng Z. FBXL6 governs c-MYC to promote hepatocellular carcinoma through ubiquitination and stabilization of HSP90AA1. Cell Commun Signal 2020; 18:100. [PMID: 32576198 PMCID: PMC7310287 DOI: 10.1186/s12964-020-00604-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Heat shot protein 90 (HSP90) AA1 functions as an onco-protein to regulate the assembly, manipulation, folding and degradation of its client proteins, including c-MYC. However, little is known about the mechanism of HSP90AA1 regulation. Methods Transcriptome RNA-sequencing data of hepatocellular carcinoma (HCC) samples were used to detect the mRNA expression of FBXL6. Immunoprecipitation/Mass Spectrum (IP/MS) method was used to identify the interacting proteins of FBXL6. The co-immunoprecipitation assay was used to determine the interaction between FBXL6 and HSP90AA1. The in vivo ubiquitination assay was performed to determine the regulation of HSP90AA1 by FBXL6. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to determine the transcriptional regulation of FBXL6 by c-MYC. Immunohistochemical (IHC) staining was performed to study the correlation of FBXL6 and HSP90AA1 protein expression in 87 HCC samples. Cell counting and colony formation assays were implemented to detect the biological effects of FBXL6 on the growth of HCC cells in vitro. The effect of FBXL6 on HCC tumor growth in vivo was studied in a tumor xenograft model in mice. Results Here, we identified the orphan F-box protein FBXL6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin ligase for HSP90AA1. FBXL6 promoted K63-dependent ubiquitination of HSP90AA1 to stabilize it. Through analysis of the TCGA dataset, we found that FBXL6 was significantly increased in HCC tissues and positively correlated with c-MYC pathway. FBXL6 accumulation in HCC causes the stabilization and activation of c-MYC by preventing HSP90AA1 degradation. The activated c-MYC directly binds to the promoter region of FBXL6 to induce its mRNA expression. Conclusion Collectively, our data revealed an unknown FBXL6-HSP90AA1-c-MYC axis which might contribute to the oncogenesis of HCC, and we propose that inhibition of FBXL6 might represent an effective therapeutic strategy for HCC treatment. Video abstract
Collapse
Affiliation(s)
- Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lanyun Feng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
49
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Yu Q, Jiang Y, Sun Y. Anticancer drug discovery by targeting cullin neddylation. Acta Pharm Sin B 2020; 10:746-765. [PMID: 32528826 PMCID: PMC7276695 DOI: 10.1016/j.apsb.2019.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Protein neddylation is a post-translational modification which transfers the ubiquitin-like protein NEDD8 to a lysine residue of the target substrate through a three-step enzymatic cascade. The best-known substrates of neddylation are cullin family proteins, which are the core component of Cullin–RING E3 ubiquitin ligases (CRLs). Given that cullin neddylation is required for CRL activity, and CRLs control the turn-over of a variety of key signal proteins and are often abnormally activated in cancers, targeting neddylation becomes a promising approach for discovery of novel anti-cancer therapeutics. In the past decade, we have witnessed significant progress in the field of protein neddylation from preclinical target validation, to drug screening, then to the clinical trials of neddylation inhibitors. In this review, we first briefly introduced the nature of protein neddylation and the regulation of neddylation cascade, followed by a summary of all reported chemical inhibitors of neddylation enzymes. We then discussed the structure-based targeting of protein–protein interaction in neddylation cascade, and finally the available approaches for the discovery of new neddylation inhibitors. This review will provide a focused, up-to-date and yet comprehensive overview on the discovery effort of neddylation inhibitors.
Collapse
Key Words
- AMP, adenosine 5′-monophosphate
- Anticancer
- BLI, biolayer interferometry
- CETSA, cellular thermal shift assay
- Drug discovery
- FH, frequent hitters
- HTS, high-throughput screen
- High-throughput screening
- IP, immunoprecipitation
- ITC, isothermal titration calorimetry
- NAE, NEDD8 activating enzyme
- Neddylation
- PAINS, pan-assay interference compounds
- SAR, structure–activity relationship
- Small molecule inhibitors
- UBL, ubiquitin-like protein
- Ubiquitin–proteasome system
- Virtual screen
Collapse
|