1
|
Zonooz ER, Ghezelayagh Z, Moradmand A, Aghayan HR, Shekari F, Tahamtani Y. Potential role of Sigma-1 receptor inhibition and ER stress-related pathways in upregulating definitive endoderm markers in human embryonic stem cells. Exp Cell Res 2025; 448:114557. [PMID: 40221006 DOI: 10.1016/j.yexcr.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in stem cell proliferation, differentiation, and apoptosis. Sigma-1 receptor (S1R) is a unique ER chaperon protein that regulates ER stress and UPR. Here, we examine the effects of S1R inhibition on pluripotency and differentiation of human embryonic stem cells (hESCs). hESCs were treated with different doses of an S1R inhibitor (BD 1047), and we investigated the expressions of different pluripotency and lineage-specific genes. The BD-treated hESCs showed increased SRY-box transcription factor 17 (SOX17) expression [definitive endoderm-specific protein], and reductions in NANOG expression and in the number of alkaline phosphatase (ALP)-positive colonies. In silico gene expression analysis of three datasets that contained the hESCs-derived DE samples (GSE98324, GSE63592, GSE52658) was performed to investigate the ER stress-related gene expression patterns during DE differentiation. In silico analysis revealed that UPR-related genes upregulated during DE differentiation and CCL2 was the only gene present in all three DE datasets. qRT-PCR and immunostaining showed that CCL2, eIF2A, ATF4, XBP1, GRP78, DDIT3, DNAJB9, and PDIA5 which are UPR related marker genes were all upregulated in both the BD-treated hESCs and female and male hESC-derived DE cells. The results of this study suggest possible roles for S1R, ER stress-related genes, and the CCL2 pathway during differentiation of hESCs into DE. These potential new targets may improve the efficiency of protocols used to differentiate endodermal lineages.
Collapse
Affiliation(s)
- Elmira Rezaei Zonooz
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Ribeiro AL, Dallagiovanna B. The Role of Long Non-Coding RNAs in Human Endoderm Differentiation. Noncoding RNA 2025; 11:29. [PMID: 40278506 PMCID: PMC12029278 DOI: 10.3390/ncrna11020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
The human genome sequencing revealed a vast complexity of transcripts, with over 80% of the genome being transcribed into non-coding RNAs. In particular, long non-coding RNAs (lncRNAs) have emerged as critical regulators of various cellular processes, including embryonic development and stem cell differentiation. Despite extensive efforts to identify and characterize lncRNAs, defining their mechanisms of action in state-specific cellular contexts remains a significant challenge. Only recently has the involvement of lncRNAs in human endoderm differentiation of pluripotent stem cells begun to be addressed, creating an opportunity to explore the mechanisms by which lncRNAs exert their functions in germ layer formation, lineage specification, and commitment. This review summarizes current findings on the roles of lncRNAs in endoderm differentiation, highlighting the functional mechanisms and regulatory aspects underlying their involvement in cell fate decisions leading to endoderm development. The key lncRNAs implicated in endoderm differentiation are discussed, along with their interaction with transcription factors and RNA-binding proteins and modulation of signaling pathways essential for endoderm development. Gaining insight into the regulatory roles of lncRNAs in endoderm differentiation enhances the understanding of developmental biology and provides a foundation for discovering novel lncRNAs involved in cell fate determination.
Collapse
Affiliation(s)
| | - Bruno Dallagiovanna
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute—FIOCRUZ/PR, Curitiba 81350-010, Brazil;
| |
Collapse
|
3
|
Yang J, Zhang D, Jiang W. Long noncoding RNA as an emerging regulator of endoderm differentiation: progress and perspectives. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:11. [PMID: 40133743 PMCID: PMC11937447 DOI: 10.1186/s13619-025-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Accumulated studies have demonstrated that long noncoding RNAs (lncRNAs) play crucial regulatory roles in diverse biological processes, such as embryonic development and cell differentiation. Comprehensive transcriptome analysis identifies extensive lncRNAs, gradually elucidating their functions across various contexts. Recent studies have highlighted the essential role of lncRNAs in definitive endoderm differentiation, underscoring their importance in early development. In this review, we have analyzed the features of overlapping, proximal, and desert lncRNAs, classified by genomic location, in pluripotent stem cells (PSCs) and the differentiation derivatives. Furthermore, we focus on the endoderm lineage and review the latest advancements in lncRNA identification and their distinct regulatory mechanisms. By consolidating current knowledge, we aim to provide a clearer perspective on how lncRNAs contribute to endoderm differentiation in different manners.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
4
|
Xie Y, Chen S, Guo Z, Tian Y, Hong X, Feng P, Xie Q, Yu Q. Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome. MedComm (Beijing) 2023; 4:e396. [PMID: 37817894 PMCID: PMC10560969 DOI: 10.1002/mco2.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent reproductive endocrine disorder, with metabolic abnormalities and ovulation disorders. The post-translational modifications (PTMs) are functionally relevant and strengthen the link between metabolism and cellular functions. Lysine crotonylation is a newly identified PTM, the function of which in PCOS has not yet been reported. To explore the molecular mechanisms of crotonylation involved in the abnormalities of metabolic homeostasis and oocyte maturation in PCOS, by using liquid chromatography-tandem mass spectrometry analysis, we constructed a comprehensive map of crotonylation modifications in ovarian tissue of PCOS-like mouse model established by dehydroepiandrosterone induction. The crotonylation levels of proteins involved in metabolic processes were significantly decreased in PCOS ovaries compared to control samples. Further investigation showed that decrotonylation of Lon protease 1 (LONP1) at lysine 390 was associated with mitochondrial dysfunction in PCOS. Moreover, LONP1 crotonylation levels in PCOS were correlated with ovarian tissue oxidative stress levels, androgen levels, and oocyte development. Consistently, down-regulation of LONP1 and LONP1 crotonylation levels were also observed in the blood samples of PCOS patients. Collectively, our study revealed a mechanism by which the decrotonylation of LONP1 may attenuate its activity and alter follicular microenvironment to affect oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Shuwen Chen
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Zaixin Guo
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Ying Tian
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Xinyu Hong
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Penghui Feng
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Qiu Xie
- Department of Medical Research CenterState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qi Yu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| |
Collapse
|
5
|
Yagi H, Cui C, Saydmohammed M, Gabriel G, Baker C, Devine W, Wu Y, Lin JH, Malek M, Bais A, Murray S, Aronow B, Tsang M, Kostka D, Lo CW. Spatial transcriptome profiling uncovers metabolic regulation of left-right patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537827. [PMID: 37131609 PMCID: PMC10153223 DOI: 10.1101/2023.04.21.537827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of Bmp7 and genes regulating insulin growth factor signaling. Cardiomyocyte differentiation was left-biased, which may underlie the specification of heart looping orientation. This is consistent with known Bmp7 stimulation of glycolysis and glycolysis suppression of cardiomyocyte differentiation. Liver/lung laterality may be specified via similar metabolic regulation of endoderm differentiation. Myo1d , found to be left-sided, was shown to regulate gut looping in mice, zebrafish, and human. Together these findings indicate metabolic regulation of left-right patterning. This could underlie high incidence of heterotaxy-related birth defects in maternal diabetes, and the association of PFKP, allosteric enzyme regulating glycolysis, with heterotaxy. This transcriptome dataset will be invaluable for interrogating birth defects involving laterality disturbance.
Collapse
|
6
|
Zhang YX, Chen SL, Li YM, Zheng YW. Limitations and challenges of direct cell reprogramming in vitro and in vivo. Histol Histopathol 2022; 37:723-737. [PMID: 35417038 DOI: 10.14670/hh-18-458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Direct reprogramming, whether in vitro or in vivo, has attracted great attention because of its advantages of convenience, short-term conversion, direct targets, no immune rejection, and potential clinical applications. In addition, due to its independence from the pluripotent state, direct programming minimizes some safety concerns associated with the use of human pluripotent stem cells. However, the significant limitations of reprogrammed cells, such as poor proliferative ability, low efficiency, and immature function, need to be addressed before the clinical application potential can be expanded. Here, we review the recent achievements of direct reprogramming in 2D and 3D systems in vitro and in vivo, covering cells derived from the three germ layers from stem/progenitor cells to terminal cells, such as hepatocytes, pancreatic β cells, cardiomyocytes, endothelial cells, osteoblasts, chondrocytes, neurons, and melanocytes. Combining our lab experiences with current work, we summarize the practical and potential issues that need to be solved and the prospects of strategies for addressing the current dilemmas. Through comprehensive analyses, it is concluded that the directions for dealing with efficiency and functionality issues could be the optimization of transcription factors, the upgradation for delivery systems, the regulation of epigenetic factors and pathways, and the improvement of cellular maintenance conditions. Besides, converting cells into the progenitor state firstly and then differentiating them into the desired cell types with chemical compounds may provide an approach to obtaining functional and safe converted cells in batches with a better proliferative ability. With the emergence of more and more direct reprogramming techniques and approaches with both safety and effectiveness, it is bound to bring a new dawn for mechanism research and therapeutic applications for relevant diseases in the future.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Si-Lin Chen
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China.
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Karimova MV, Gvazava IG, Vorotelyak EA. Overcoming the Limitations of Stem Cell-Derived Beta Cells. Biomolecules 2022; 12:biom12060810. [PMID: 35740935 PMCID: PMC9221417 DOI: 10.3390/biom12060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Great advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro. The most promising approach is the generation of stem cell-derived beta cells that could provide an unlimited source of insulin-secreting cells. Recent studies provide methods to produce beta-like cell clusters that display glucose-stimulated insulin secretion—one of the key characteristics of the beta cell. However, in comparison with native beta cells, stem cell-derived beta cells do not undergo full functional maturation. In this paper we review the development and current state of various protocols, consider advantages, and propose ways to improve them. We examine molecular pathways, epigenetic modifications, intracellular components, and the microenvironment as a possible leverage to promote beta cell functional maturation. A possibility to create islet organoids from stem cell-derived components, as well as their encapsulation and further transplantation, is also examined. We try to combine modern research on beta cells and their crosstalk to create a holistic overview of developing insulin-secreting systems.
Collapse
Affiliation(s)
- Mariana V. Karimova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Inessa G. Gvazava
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|