1
|
Sambri I, Trepiccione F. A zebrafish model to study RRAGD variants associated cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H1343-H1344. [PMID: 39453427 DOI: 10.1152/ajpheart.00695.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
2
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
3
|
Courtney TM, Darrah KE, Horst TJ, Tsang M, Deiters A. Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in Cells and Zebrafish Embryos. ACS Chem Biol 2021; 16:2434-2443. [PMID: 34609839 DOI: 10.1021/acschembio.1c00547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapamycin-induced dimerization of FKBP and FRB is the most commonly utilized chemically induced protein dimerization system. It has been extensively used to conditionally control protein localization, split-enzyme activity, and protein-protein interactions in general by simply fusing FKBP and FRB to proteins of interest. We have developed a new aminonitrobiphenylethyl caging group and applied it to the generation of a caged rapamycin analog that can be photoactivated using blue light. Importantly, the caged rapamycin analog shows minimal background activity with regard to protein dimerization and can be directly interfaced with a wide range of established (and often commercially available) FKBP/FRB systems. We have successfully demonstrated its applicability to the optical control of enzymatic function, protein stability, and protein subcellular localization. Further, we also showcased its applicability toward optical regulation of cell signaling, specifically mTOR signaling, in cells and aquatic embryos.
Collapse
Affiliation(s)
- Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kristie E. Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Trevor J. Horst
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Xie F, Xu S, Lu Y, Wong KF, Sun L, Hasan KMM, Ma ACH, Tse G, Manno SHC, Tian L, Yue J, Cheng SH. Metformin accelerates zebrafish heart regeneration by inducing autophagy. NPJ Regen Med 2021; 6:62. [PMID: 34625572 PMCID: PMC8501080 DOI: 10.1038/s41536-021-00172-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Metformin is one of the most widely used drugs for type 2 diabetes and it also exhibits cardiovascular protective activity. However, the underlying mechanism of its action is not well understood. Here, we used an adult zebrafish model of heart cryoinjury, which mimics myocardial infarction in humans, and demonstrated that autophagy was significantly induced in the injured area. Through a systematic evaluation of the multiple cell types related to cardiac regeneration, we found that metformin enhanced the autophagic flux and improved epicardial, endocardial and vascular endothelial regeneration, accelerated transient collagen deposition and resolution, and induced cardiomyocyte proliferation. Whereas, when the autophagic flux was blocked, then all these processes were delayed. We also showed that metformin transiently enhanced the systolic function of the heart. Taken together, our results indicate that autophagy is positively involved in the metformin-induced acceleration of heart regeneration in zebrafish and suggest that this well-known diabetic drug has clinical value for the prevention and amelioration of myocardial infarction.
Collapse
Affiliation(s)
- Fangjing Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shisan Xu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Alvin C H Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
| | - Sinai H C Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Tian
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Elsanhoury A, Tschöpe C, Van Linthout S. A Toolbox of Potential Immune-Related Therapies for Inflammatory Cardiomyopathy. J Cardiovasc Transl Res 2020; 14:75-87. [PMID: 32440911 PMCID: PMC7892499 DOI: 10.1007/s12265-020-10025-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Myocarditis is a multifactorial disorder, characterized by an inflammatory reaction in the myocardium, predominantly triggered by infectious agents, but also by antigen mimicry or autoimmunity in susceptible individuals. Unless spontaneously resolved, a chronic inflammatory course concludes with cardiac muscle dysfunction portrayed by ventricular dilatation, clinically termed inflammatory cardiomyopathy (Infl-CM). Treatment strategies aim to resolve chronic inflammation and preserve cardiac function. Beside standard heart failure treatments, which only play a supportive role in this condition, systemic immunosuppressants are used to diminish inflammatory cell function at the cost of noxious side effects. To date, the treatment protocols are expert-based without large clinical evidence. This review describes concept and contemporary strategies to alleviate myocardial inflammation and sheds light on potential inflammatory targets in an evidence-based order.
Collapse
Affiliation(s)
- Ahmed Elsanhoury
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrerstrasse 15, 13353, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Kfir SH, Barash I. Calorie restriction and rapamycin administration induce stem cell self-renewal and consequent development and production in the mammary gland. Exp Cell Res 2019; 382:111477. [PMID: 31242443 DOI: 10.1016/j.yexcr.2019.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022]
Abstract
Expansion of the mammary epithelial stem cell pool holds promise for consequent mammary gland development and production. Complementary analyses of bovine mammary implants maintained in de-epithelialized mouse mammary fat pad and endogenous mouse mammary gland were performed to elucidate the effect of calorie restriction (CR) on stem cell self-renewal. CR elevated propagation rate and non-adherent mammosphere generation in cultured bovine mammary cells. A corresponding decrease in progenitor-induced colony formation and differentiation marker expression was noted. In the mouse gland, CR enhanced the take rate of transplanted cells and outgrowths' fat pad occupancy. Downregulating mTOR activity by rapamycin administration reproduced CR's effects on stem cell self-renewal within a shorter period. Flow cytometry demonstrated a significant 1.5-fold increase in stem cell number and a corresponding decrease in luminal progenitor and differentiated cells. Consequent effects of rapamycin administration included enhanced ductlet generation in bovine implants and higher milk-protein gene expression in cultured mouse mammary cells. The stimulatory effect of CR on BST-1 expression in both bovine implants and mouse glands resembled that noted in the intestinal Paneth stem cell niche (Yilmaz et al., 2012). A putative niche may also exist in the mammary gland, conveying energy-status information to the insulated stem cells.
Collapse
Affiliation(s)
- Shenhav Hanna Kfir
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Itamar Barash
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel.
| |
Collapse
|
7
|
De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy. Hum Genet 2016; 135:909-917. [PMID: 27234373 DOI: 10.1007/s00439-016-1685-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/14/2016] [Indexed: 12/30/2022]
Abstract
Idiopathic dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder with variable age-dependent penetrance. We sought to identify the genetic underpinnings of syndromic, sporadic DCM in a newborn female diagnosed in utero. Postnatal evaluation revealed ventricular dilation and systolic dysfunction, bilateral cataracts, and mild facial dysmorphisms. Comprehensive metabolic and genetic testing, including chromosomal microarray, mitochondrial DNA and targeted RASopathy gene sequencing, and clinical whole exome sequencing for known cardiomyopathy genes was non-diagnostic. Following exclusion of asymptomatic DCM in the parents, trio-based whole exome sequencing was carried out on a research basis, filtering for rare, predicted deleterious de novo and recessive variants. An unreported de novo S75Y mutation was discovered in RRAGC, encoding Ras-related GTP binding C, an essential GTPase in nutrient-activated mechanistic target of rapamycin complex 1 (mTORC1) signaling. In silico protein modeling and molecular dynamics simulation predicted the mutation to disrupt ligand interactions and increase the GDP-bound state. Overexpression of RagC(S75Y) rendered AD293 cells partially insensitive to amino acid deprivation, resulting in increased mTORC1 signaling compared to wild-type RagC. These findings implicate mTORC1 dysregulation through a gain-of-function mutation in RagC as a novel molecular basis for syndromic forms of pediatric heart failure, and expand genotype-phenotype correlation in RASopathy-related syndromes.
Collapse
|
8
|
Saxena A, Sampson JR. Phenotypes associated with inherited and developmental somatic mutations in genes encoding mTOR pathway components. Semin Cell Dev Biol 2014; 36:140-6. [PMID: 25263008 DOI: 10.1016/j.semcdb.2014.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
Abstract
Mutations affecting the genes that encode upstream components in the mammalian (or mechanistic) target of rapamycin signalling pathway are associated with a group of rare inherited and developmental disorders that show overlapping clinical features. These include predisposition to a variety of benign or malignant tumours, localized overgrowth, developmental abnormalities of the brain, neurodevelopmental disorders and epilepsy. Many of these features have been linked to hyperactivation of signalling via mammalian target of rapamycin complex 1, suggesting that inhibitors of this complex such as rapamycin and its derivatives may offer new opportunities for therapy. In this review we describe this group of inherited and developmental disorders and discuss recent progress in their treatment via mTORC1 inhibition.
Collapse
Affiliation(s)
- Anurag Saxena
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Julian R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
9
|
Recent Developments in the Genetics of Cardiomyopathies. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-012-0002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|