1
|
Rogers C, John AM, Moore B. The role of MRI research radiographers in clinical research: Responsibilities, challenges, and future directions a UK perspective. J Med Imaging Radiat Sci 2025; 56:101884. [PMID: 40239275 DOI: 10.1016/j.jmir.2025.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The role of MRI research radiographers has transformed over the past decade, evolving from a focus on diagnostic imaging to active contributions in clinical research. MRI research radiographers now engage in protocol development, participant safety management, and emerging technologies, highlighting their importance in multidisciplinary research teams. AIM This professional review explores the responsibilities, challenges, and future directions of MRI research radiographers in the UK, with a focus on their evolving role in clinical research settings. METHODS A narrative review methodology was utilised to synthesise peer-reviewed literature, professional guidelines, and expert opinions. Findings were categorised into three main themes: core responsibilities, challenges and barriers, and opportunities for future professional growth. KEY FINDINGS MRI research radiographers play a crucial role in managing participant safety, ethical considerations, and advanced imaging technologies. Challenges such as resource constraints, interdisciplinary communication gaps, and ethical dilemmas (e.g., incidental findings) pose barriers to effective practice. Future opportunities include integrating artificial intelligence, establishing standardised professional frameworks, and expanding global collaborations. Enhanced training in advanced imaging techniques, research ethics, and governance is also essential for their continued contribution to both research and clinical practice. CONCLUSION This review highlights the critical and evolving role of MRI research radiographers in advancing clinical research and participant care. By addressing current challenges and leveraging emerging opportunities, MRI research radiographers can remain at the forefront of technological innovation and enhance their impact on healthcare research and delivery.
Collapse
Affiliation(s)
| | - Arathy Mary John
- Bournemouth University, Bournemouth Gateway Building - BG-114, 2 St Paul's Ln, Bournemouth, BH8 8GP, UK
| | - Becky Moore
- Bournemouth University, Bournemouth Gateway Building - BG-114, 2 St Paul's Ln, Bournemouth, BH8 8GP, UK.
| |
Collapse
|
2
|
Xu Z, Li Y, Wang Y, Wan Y, Chen J. Transvaginal ultrasound and magnetic resonance imaging in detecting rectosigmoid deep infiltrating endometriosis: a comparative meta-analysis. Front Med (Lausanne) 2025; 12:1552185. [PMID: 40166065 PMCID: PMC11955469 DOI: 10.3389/fmed.2025.1552185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Objective This meta-analysis aimed to assess the diagnostic efficacy of transvaginal ultrasound (TVS) and magnetic resonance imaging (MRI) for the detection of rectosigmoid deep infiltrating endometriosis (DIE). Methods A thorough systematic review was performed by searching the PubMed and Embase databases for studies evaluating the diagnostic performance of TVS and MRI in rectosigmoid DIE, up until August 12, 2024. The DerSimonian and Laird approach was utilized to calculate sensitivity and specificity, with the Freeman-Tukey double arcsine transformation employed for data analysis. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Results The meta-analysis encompassed 10 studies involving 1,604 patients. The findings revealed that TVS had an overall sensitivity of 0.85 (95% CI: 0.76-0.92) and specificity of 0.92 (95% CI: 0.85-0.98), while MRI demonstrated a sensitivity of 0.83 (95% CI: 0.73-0.92) and specificity of 0.95 (95% CI: 0.90-0.99). Statistical analysis indicated no significant differences in sensitivity (p = 0.86) or specificity (p = 0.50) between the two imaging techniques. Additionally, the funnel plot asymmetry test did not reveal significant publication bias for any outcomes (Egger's test: all p > 0.05). Conclusion The meta-analysis reveals nearly equivalent diagnostic performance of TVS and MRI in detecting rectosigmoid DIE, with no statistical differences in sensitivity and specificity. However, high heterogeneity among studies highlights the need for further prospective research. Systematic review registration The protocol for this meta-analysis has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) under the ID: CRD42024559141, https://www.crd.york.ac.uk/PROSPERO/view/CRD42024559141.
Collapse
Affiliation(s)
- Ziwei Xu
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yisheng Li
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Wang
- Changfeng Community Health Service Center, Shanghai, China
| | - Yiting Wan
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Chen
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Balgobind A, Asemota D, Rodriguez E, Wattanachayakul P, Fudim M, Alvarez Villela M. Novel device therapies in heart failure: focus on patient selection. Front Cardiovasc Med 2025; 12:1419873. [PMID: 40071231 PMCID: PMC11893582 DOI: 10.3389/fcvm.2025.1419873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing prevalence of heart failure (HF) has led to advancements in therapeutic strategies, including the development of new pharmacological treatments and the expansion of guideline recommendations across the spectrum of left ventricular ejection fractions. Despite these advancements, the full benefits of guideline-directed medical therapy (GDMT) are often limited by various barriers that result in incomplete implementation or suboptimal responses. For patients who cannot tolerate or only partially respond to GDMT, therapeutic options remain limited. This gap is particularly significant for those with contraindications to heart replacement therapies (HRT), such as left ventricular assist device (LVAD) or heart transplant. In light of these potential limitations, this review article proposes categorizing HF patients into four distinct phenoprofiles based on their tolerance to GDMT and candidacy for HRT. Considering these HF phenoprofiles may guide treatment decisions regarding the selection and use of novel device-based HF therapies. Furthermore, we summarize data on commercially available and emerging device-based HF therapies, evaluating their clinical utility, mechanisms of action, and selection criteria based on current evidence. Finally, we describe clinical cases across various proposed HF phenoprofiles to illustrate how these HF profiles can guide the use of novel device-based therapies to achieve clinical stability, improve GDMT tolerance, or serve as a bridge to, or be used in tandem with HRT in select patients.
Collapse
Affiliation(s)
- Amrita Balgobind
- Division of Cardiology, Department of Internal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daniel Asemota
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Emily Rodriguez
- Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Phuuwadith Wattanachayakul
- Department of Medicine, Jefferson Einstein Hospital, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marat Fudim
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Miguel Alvarez Villela
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| |
Collapse
|
4
|
Gut P, Cochet H, Stuber M, Bustin A. Magnetic Resonance Myocardial Imaging in Patients With Implantable Cardiac Devices: Challenges, Techniques, and Clinical Applications. Echocardiography 2024; 41:e70012. [PMID: 39469755 DOI: 10.1111/echo.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Cardiovascular magnetic resonance imaging (MRI) in patients with cardiac implants, such as pacemakers and defibrillators, has gained importance in recent years with the development of modern cardiac implantable electronic devices. The increasing clinical need to perform MRI examinations in patients with cardiac implants has driven the development of new advanced MRI sequences to mitigate image artifacts associated with cardiac implants. More specifically, advances in imaging techniques, such as wideband late gadolinium enhancement imaging, wideband T1 mapping, and wideband perfusion, have been designed to improve image quality and examinations in patients with cardiac implants, enabling a comprehensive and more reliable diagnosis, which was previously unattainable in these patients. This review article explores recent developments and applications of wideband techniques in the field of cardiovascular MRI, offering insights into their transformative potential. Clinical applications of wideband cardiovascular MRI are highlighted, particularly in assessing myocardial viability, guiding ventricular tachycardia ablation, and characterizing myocardial tissue.
Collapse
Affiliation(s)
- Pauline Gut
- IHU LIRYC, Heart Rhythm Disease Institute, Université de Bordeaux - INSERM U1045, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Heart Rhythm Disease Institute, Université de Bordeaux - INSERM U1045, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Heart Rhythm Disease Institute, Université de Bordeaux - INSERM U1045, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Aurélien Bustin
- IHU LIRYC, Heart Rhythm Disease Institute, Université de Bordeaux - INSERM U1045, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| |
Collapse
|
5
|
Mattesi G, Pergola V, Bariani R, Martini M, Motta R, Perazzolo Marra M, Rigato I, Bauce B. Multimodality imaging in arrhythmogenic cardiomyopathy - From diagnosis to management. Int J Cardiol 2024; 407:132023. [PMID: 38583594 DOI: 10.1016/j.ijcard.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Arrhythmogenic Cardiomyopathy (AC), an inherited cardiac disorder characterized by myocardial fibrofatty replacement, carries a significant risk of sudden cardiac death (SCD) due to ventricular arrhythmias. A comprehensive multimodality imaging approach, including echocardiography, cardiac magnetic resonance imaging (CMR), and cardiac computed tomography (CCT), allows for accurate diagnosis, effective risk stratification, vigilant monitoring, and appropriate intervention, leading to improved patient outcomes and the prevention of SCD. Echocardiography is primary tool ventricular morphology and function assessment, CMR provides detailed visualization, CCT is essential in early stages for excluding congenital anomalies and coronary artery disease. Echocardiography is preferred for follow-up, with CMR capturing changes over time. The strategic use of these imaging methods aids in confirming AC, differentiating it from other conditions, tracking its progression, managing complications, and addressing end-stage scenarios.
Collapse
Affiliation(s)
| | | | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Marika Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
6
|
Qin Y, Qin X, Zhang J, Guo X. Artificial intelligence: The future for multimodality imaging of right ventricle. Int J Cardiol 2024; 404:131970. [PMID: 38490268 DOI: 10.1016/j.ijcard.2024.131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The crucial pathophysiological and prognostic roles of the right ventricle in various diseases have been well-established. Nonetheless, conventional cardiovascular imaging modalities are frequently associated with intrinsic limitations when evaluating right ventricular (RV) morphology and function. The integration of artificial intelligence (AI) in multimodality imaging presents a promising avenue to circumvent these obstacles, paving the way for future fully automated imaging paradigms. This review aimed to address the current challenges faced by clinicians and researchers in integrating RV imaging and AI technology, to provide a comprehensive overview of the current applications of AI in RV imaging, and to offer insights into future directions, opportunities, and potential challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaohan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Bučić D, Hrabak-Paar M. Multimodality imaging in patients with implantable loop recorders: Tips and tricks. Hellenic J Cardiol 2024; 77:93-105. [PMID: 38096953 DOI: 10.1016/j.hjc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023] Open
Abstract
An implantable loop recorder (ILR) is a leadless rectangular device used for prolonged electrocardiographic monitoring for up to 3 years. This miniaturized device, inserted subcutaneously, allows clinicians to investigate possible cardiac rhythm disturbances in patients suffering from recurrent unexplained syncope. As the age of the population increases rapidly and the number of ILR patients amplifies, the clinical significance of ILRs is undeniable. Although radioopaque and easily seen on plain chest radiographs and other imaging modalities, ILRs may represent a challenge for clinicians and radiologists to recognize their classic appearance and differentiate them from numerous other cardiac devices. This article aims to summarize current literature on ILRs, their basic function, types, and indications for implantation, but most of all, it aims to familiarize clinicians and radiologists with common imaging features of these devices, safety issues, and artifact-reducing methods. Specifically, this review discusses the typical appearance of ILRs on major diagnostic imaging modalities, including chest X-ray, mammography, ultrasonography, computed tomography, and magnetic resonance imaging (MRI). Furthermore, optimization strategies to mitigate image artifacts and safety issues regarding MRI are discussed.
Collapse
Affiliation(s)
- Dinea Bučić
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Maja Hrabak-Paar
- School of Medicine, University of Zagreb, Zagreb, Croatia; Department of Diagnostic and Interventional Radiology, University Hospital Center Zagreb, Zagreb, Croatia.
| |
Collapse
|
8
|
De Leon-Benedetti LS, Ramirez-Suarez KI, Otero HJ, Rapp JB, Biko DM, Smith C, Serai SD, Janson C, Shah M, Englehardt G, Fogel M, White AM. How we do it: Cardiac implantable devices are not a contraindication to MRI: time for a paradigm shift. Pediatr Radiol 2024; 54:863-875. [PMID: 38488925 DOI: 10.1007/s00247-024-05902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Magnetic resonance imaging (MRI) is now an indispensable diagnostic tool in medicine due to its outstanding contrast resolution and absence of radiation exposure, enabling detailed tissue characterization and three-dimensional anatomical representation. This is especially important when evaluating individuals with congenital heart disease (CHD) who frequently require cardiac implantable electrical devices (CIEDs). While MRI safety issues have previously limited its use in patients with CIEDs, new advances have called these limitations into question. However, difficulties persist in the pediatric population due to the continued lack of specific safety data both related to imaging young children and the specific CIED devices they often require. This paper discusses MRI safety considerations related to imaging patients with CIEDs, investigates pediatric-specific problems, and describes thorough methods for safe MRI access, highlighting the significance of specialized institutional guidelines.
Collapse
Affiliation(s)
- Laura S De Leon-Benedetti
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Karen I Ramirez-Suarez
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Jordan B Rapp
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Christopher Smith
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Christopher Janson
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Maully Shah
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - George Englehardt
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Mark Fogel
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ammie M White
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Fogante M, Volpato G, Esposto Pirani P, Cela F, Compagnucci P, Valeri Y, Selimi A, Alfieri M, Brugiatelli L, Belleggia S, Coraducci F, Argalia G, Casella M, Dello Russo A, Schicchi N. Cardiac Magnetic Resonance and Cardiac Implantable Electronic Devices: Are They Truly Still "Enemies"? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:522. [PMID: 38674168 PMCID: PMC11051994 DOI: 10.3390/medicina60040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The application of cardiac magnetic resonance (CMR) imaging in clinical practice has grown due to technological advancements and expanded clinical indications, highlighting its superior capabilities when compared to echocardiography for the assessment of myocardial tissue. Similarly, the utilization of implantable cardiac electronic devices (CIEDs) has significantly increased in cardiac arrhythmia management, and the requirements of CMR examinations in patients with CIEDs has become more common. However, this type of exam often presents challenges due to safety concerns and image artifacts. Until a few years ago, the presence of CIED was considered an absolute contraindication to CMR. To address these challenges, various technical improvements in CIED technology, like the reduction of the ferromagnetic components, and in CMR examinations, such as the introduction of new sequences, have been developed. Moreover, a rigorous protocol involving multidisciplinary collaboration is recommended for safe CMR examinations in patients with CIEDs, emphasizing risk assessment, careful monitoring during CMR, and post-scan device evaluation. Alternative methods to CMR, such as computed tomography coronary angiography with tissue characterization techniques like dual-energy and photon-counting, offer alternative potential solutions, although their diagnostic accuracy and availability do limit their use. Despite technological advancements, close collaboration and specialized staff training remain crucial for obtaining safe diagnostic CMR images in patients with CIEDs, thus justifying the presence of specialized centers that are equipped to handle these type of exams.
Collapse
Affiliation(s)
- Marco Fogante
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, 60126 Ancona, Italy; (P.E.P.); (F.C.); (G.A.)
| | - Giovanni Volpato
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Paolo Esposto Pirani
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, 60126 Ancona, Italy; (P.E.P.); (F.C.); (G.A.)
| | - Fatjon Cela
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, 60126 Ancona, Italy; (P.E.P.); (F.C.); (G.A.)
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Yari Valeri
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Adelina Selimi
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Michele Alfieri
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Leonardo Brugiatelli
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Sara Belleggia
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Francesca Coraducci
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
| | - Giulio Argalia
- Maternal-Child, Senological, Cardiological Radiology and Outpatient Ultrasound, Department of Radiological Sciences, University Hospital of Marche, 60126 Ancona, Italy; (P.E.P.); (F.C.); (G.A.)
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Azienda Ospedaliero-Universitaria delle Marche”, 60126 Ancona, Italy; (G.V.); (P.C.); (Y.V.); (A.S.); (M.A.); (L.B.); (S.B.); (F.C.); (M.C.); (A.D.R.)
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy
| | - Nicolò Schicchi
- Cardiovascular Radiological Diagnostics, Department of Radiological Sciences, University Hospital of Marche, 60126 Ancona, Italy;
| |
Collapse
|
10
|
Harwood M, Fahrenholtz SJ, Wellnitz CV, Kawashima A, Panda A. MRI in Adult Patients with Active and Inactive Implanted MR-conditional, MR-nonconditional, and Other Devices. Radiographics 2024; 44:e230102. [PMID: 38421911 DOI: 10.1148/rg.230102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Active implanted medical devices (AIMDs) enable therapy and patient monitoring by way of electrical activity and typically have a battery and electrical leads. The most common types of AIMDs include cardiac implantable electronic devices (CIEDs), spinal cord stimulators, deep brain stimulators, bone growth or fusion stimulators, other neurostimulators, and drug infusion pumps. As more patients with AIMDs undergo MRI, it is important to consider the safety of patients who have these implanted devices during MRI. The authors review the physics concepts related to MRI safety, such as peak spatial gradient magnetic field, specific absorption rate, root mean square value of the effective magnetic component of the transmitted RF pulse, and gradient slew rate, as well as the parameters necessary to remain within safety limits. The roles of MRI safety personnel, as set forth by the International Society of Magnetic Resonance in Medicine, are emphasized. In addition, the relevant information provided in vendor manuals is reviewed, with a focus on how to obtain relevant up-to-date information. The radiologist should be able to modify protocols to meet safety requirements, address possible alternatives to MRI, and weigh the potential benefits of MRI against the potential risks. A few more advanced topics, such as fractured or abandoned device leads and patients with multiple implanted medical devices, also are addressed. Recommended workflows for MRI in patients with implanted medical devices are outlined. It is important to implement an algorithmic MRI safety process, including a review of the MRI safety information; patient screening; optimal imaging; and monitoring patients before, during, and after the examination. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Shetty et al in this issue.
Collapse
Affiliation(s)
- Matthew Harwood
- From the Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ (M.H., S.J.F., C.V.W., A.K., A.P.); and Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ (M.H.)
| | - Samuel J Fahrenholtz
- From the Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ (M.H., S.J.F., C.V.W., A.K., A.P.); and Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ (M.H.)
| | - Clinton V Wellnitz
- From the Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ (M.H., S.J.F., C.V.W., A.K., A.P.); and Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ (M.H.)
| | - Akira Kawashima
- From the Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ (M.H., S.J.F., C.V.W., A.K., A.P.); and Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ (M.H.)
| | - Anshuman Panda
- From the Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ (M.H., S.J.F., C.V.W., A.K., A.P.); and Carl T. Hayden Veterans' Administration Medical Center, Phoenix, AZ (M.H.)
| |
Collapse
|
11
|
Rosu-Bubulac M, Trankle CR, Mankad P, Grizzard JD, Ellenbogen KA, Jordan JH, Weiss E. Institutional experience report on the target contouring workflow in the radiotherapy department for stereotactic arrhythmia radioablation delivered on conventional linear accelerators. Strahlenther Onkol 2024; 200:83-96. [PMID: 37872398 DOI: 10.1007/s00066-023-02159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set. METHODS The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning-i.e., the average intensity projection (AIP) image set derived from a 4D CT-via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively. RESULTS The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target. CONCLUSION An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.
Collapse
Affiliation(s)
- Mihaela Rosu-Bubulac
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Cory R Trankle
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pranav Mankad
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John D Grizzard
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth A Ellenbogen
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer H Jordan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Nissan N, Ochoa-Albiztegui RE, Fruchtman H, Gluskin J, Eskreis-Winkler S, Horvat JV, Kosmidou I, Meng A, Pinker K, Jochelson MS. Breast MRI in patients with implantable loop recorder: initial experience. Eur Radiol 2024; 34:155-164. [PMID: 37555957 PMCID: PMC11181953 DOI: 10.1007/s00330-023-10025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES To investigate the feasibility of breast MRI exams and guided biopsies in patients with an implantable loop recorder (ILR) as well as the impact ILRs may have on image interpretation. MATERIALS AND METHODS This retrospective study examined breast MRIs of patients with ILR, from April 2008 to September 2022. Radiological reports and electronic medical records were reviewed for demographic characteristics, safety concerns, and imaging findings. MR images were analyzed and compared statistically for artifact quantification on the various pulse sequences. RESULTS Overall, 40/82,778 (0.049%) MRIs during the study period included ILR. All MRIs were completed without early termination. No patient-related or device-related adverse events occurred. ILRs were most commonly located in the left lower-inner quadrant (64.6%). The main artifact was a signal intensity (SI) void in a dipole formation in the ILR bed with or without areas of peripheral high SI. Artifacts appeared greatest in the cranio-caudal axis (p < 0.001), followed by the anterior-posterior axis (p < 0.001), and then the right-left axis. High peripheral rim-like SI artifacts appeared on the post-contrast and subtracted T1-weighted images, mimicking suspicious enhancement. Artifacts were most prominent on diffusion-weighted (p < 0.001), followed by T2-weighted and T1-weighted images. In eight patients, suspicious findings were found on MRI, resulting in four additional malignant lesions. Of six patients with left breast cancer, the tumor was completely visible in five cases and partially obscured in one. CONCLUSION Breast MRI is feasible and safe among patients with ILR and may provide a significant diagnostic value, albeit with localized, characteristic artifacts. CLINICAL RELEVANCE STATEMENT Indicated breast MRI exams and guided biopsies can be safely performed in patients with implantable loop recorder. Nevertheless, radiologists should be aware of associated limitations including limited assessment of the inner left breast and pseudo-enhancement artifacts. KEY POINTS • Breast MRI in patients with an implantable loop recorder is an infrequent, feasible, and safe procedure. • Despite limited breast visualization of the implantable loop recorder bed and characteristic artifacts, MRI depicted additional lesions in 8/40 (20%) of cases, half of which were malignant. • Breast MRI in patients with an implantable loop recorder should be performed when indicated, taking into consideration typical associated artifacts.
Collapse
Affiliation(s)
- Noam Nissan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Hila Fruchtman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jill Gluskin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joao V Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioanna Kosmidou
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alicia Meng
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maxine S Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Bardwell Speltz LJ, Shu Y, Watson RE, Trzasko JD, In MH, Gray EM, Halverson MA, Tarasek MR, Hua Y, Huston J, Cogswell PM, Foo TKF, Bernstein MA. Evaluation of a compact 3 T MRI scanner for patients with implanted devices. Magn Reson Imaging 2023; 103:109-118. [PMID: 37468020 PMCID: PMC10528046 DOI: 10.1016/j.mri.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.
Collapse
Affiliation(s)
- Lydia J Bardwell Speltz
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Yihe Hua
- GE Research, Niskayuna, NY, United States
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
14
|
Argalia G, Fogante M, Schicchi N, Fringuelli FM, Esposto Pirani P, Cottignoli C, Romagnolo C, Palucci A, Biscontini G, Balardi L, Argalia G, Burroni L. Hybrid PET/MRI imaging in non-ischemic cardiovascular disease. Clin Transl Imaging 2023; 12:69-80. [DOI: 10.1007/s40336-023-00586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/23/2023] [Indexed: 01/03/2025]
|
15
|
Ding S, Chen L, Liao J, Huo Q, Wang Q, Tian G, Yin W. Harnessing Hafnium-Based Nanomaterials for Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300341. [PMID: 37029564 DOI: 10.1002/smll.202300341] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
With the rapid development of nanotechnology and nanomedicine, there are great interests in employing nanomaterials to improve the efficiency of disease diagnosis and treatment. The clinical translation of hafnium oxide (HfO2 ), commercially namedas NBTXR3, as a new kind of nanoradiosensitizer for radiotherapy (RT) of cancers has aroused extensive interest in researches on Hf-based nanomaterials for biomedical application. In the past 20 years, Hf-based nanomaterials have emerged as potential and important nanomedicine for computed tomography (CT)-involved bioimaging and RT-associated cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties. In this review, a bibliometric analysis method is employed to summarize the progress on the synthesis technology of various Hf-based nanomaterials, including HfO2 , HfO2 -based compounds, and Hf-organic ligand coordination hybrids, such as metal-organic frameworks or nanoscaled coordination polymers. Moreover, current states in the application of Hf-based CT-involved contrasts for tissue imaging or cancer diagnosis are reviewed in detail. Importantly, the recent advances in Hf-based nanomaterials-mediated radiosensitization and synergistic RT with other current mainstream treatments are also generalized. Finally, current challenges and future perspectives of Hf-based nanomaterials with a view to maximize their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Shuaishuai Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Lei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Liao
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Qing Huo
- College of Biochemical and Engineering, Beijing Union University, Beijing, 100023, China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials, Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing, 100048, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Jiang F, Henry KR, Bhusal B, Webster G, Bonmassar G, Kim D, Golestanirad L. RF-induced heating of capped and uncapped abandoned epicardial leads during MRI at 1.5 T and 3 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082570 PMCID: PMC10838566 DOI: 10.1109/embc40787.2023.10340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.
Collapse
|
17
|
Ra J, Oberdier MT, Suzuki M, Vaidya D, Liu Y, Hansford R, McVeigh D, Weltin V, Tao S, Thiemann DR, Nazarian S, Halperin HR. Implantable Defibrillator System Shock Function, Mortality, and Cause of Death After Magnetic Resonance Imaging. Ann Intern Med 2023; 176:289-297. [PMID: 36716451 DOI: 10.7326/m22-2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Studies have shown that magnetic resonance imaging (MRI) does not have clinically important effects on the device parameters of non-MRI-conditional implantable cardioverter-defibrillators (ICDs). However, data on non-MRI-conditional ICD detection and treatment of arrhythmias after MRI are limited. OBJECTIVE To examine if non-MRI-conditional ICDs have preserved shock function of arrhythmias after MRI. DESIGN Prospective cohort study. (ClinicalTrials.gov: NCT01130896). SETTING 1 center in the United States. PATIENTS 629 patients with non-MRI-conditional ICDs enrolled consecutively between February 2003 and January 2015. INTERVENTIONS 813 total MRI examinations at a magnetic field strength of 1.5 Tesla using a prespecified safety protocol. MEASUREMENTS Implantable cardioverter-defibrillator interrogations were collected after MRI. Clinical outcomes included arrhythmia detection and treatment, generator or lead exchanges, adverse events, and death. RESULTS During a median follow-up of 2.2 years from MRI to latest available ICD interrogation before generator or lead exchange in 536 patients, 4177 arrhythmia episodes were detected, and 97 patients received ICD shocks. Sixty-one patients (10% of total) had 130 spontaneous ventricular tachycardia or fibrillation events terminated by ICD shocks. A total of 210 patients (33% of total) are known to have died (median, 1.7 years from MRI to death); 3 had cardiac arrhythmia deaths where shocks were indicated without direct evidence of device dysfunction. LIMITATIONS Data were acquired at a single center and may not be generalizable to other clinical settings and MRI facilities. Implantable cardioverter-defibrillator interrogations were not available for a subset of patients; adjudication of cause of death relied solely on death certificate data in a subset. CONCLUSION Non-MRI-conditional ICDs appropriately treated detected tachyarrhythmias after MRI. No serious adverse effects on device function were reported after MRI. PRIMARY FUNDING SOURCE Johns Hopkins University and National Institutes of Health.
Collapse
Affiliation(s)
- Joshua Ra
- Department of Medicine, University of California San Francisco, San Francisco, California (J.R.)
| | - Matt T Oberdier
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Masahito Suzuki
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Dhananjay Vaidya
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Yisi Liu
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland (Y.L.)
| | - Rozann Hansford
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Diana McVeigh
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Valeria Weltin
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Susumu Tao
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - David R Thiemann
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland (M.T.O., M.S., D.V., R.H., D.M., V.W., S.T., D.R.T.)
| | - Saman Nazarian
- Department of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (S.N.)
| | - Henry R Halperin
- Department of Cardiology and Departments of Radiology and Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland (H.R.H.)
| |
Collapse
|
18
|
Delgado-Alvarado E, Martínez-Castillo J, Zamora-Peredo L, Gonzalez-Calderon JA, López-Esparza R, Ashraf MW, Tayyaba S, Herrera-May AL. Triboelectric and Piezoelectric Nanogenerators for Self-Powered Healthcare Monitoring Devices: Operating Principles, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4403. [PMID: 36558257 PMCID: PMC9781874 DOI: 10.3390/nano12244403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.
Collapse
Affiliation(s)
- Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Jaime Martínez-Castillo
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Luis Zamora-Peredo
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Jose Amir Gonzalez-Calderon
- Cátedras CONACYT-Institute of Physic, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, San Luis Potosí, Mexico
| | | | | | - Shahzadi Tayyaba
- Department of Computer Engineering, The University of Lahore, Lahore 54000, Pakistan
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| |
Collapse
|
19
|
Amaral AP, Montgomery JA. Remote Programming of Cardiac Implantable Electronic Devices for MRI: Are We Ready to Change the Channel? J Cardiovasc Electrophysiol 2022; 33:1010-1012. [PMID: 35245404 DOI: 10.1111/jce.15438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has become an indispensable diagnostic tool across many fields of clinical medicine. Although reprogramming of cardiac implantable electronic devices (CIEDs) for MRI is now routine at most institutions, early experiences were notable for potential adverse effects such as device-related heating, device or lead movement, and device malfunction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ansel Philip Amaral
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jay Alan Montgomery
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
20
|
Kuroda K, Yatsushiro S. New Insights into MR Safety for Implantable Medical Devices. Magn Reson Med Sci 2022; 21:110-131. [PMID: 35228487 PMCID: PMC9199981 DOI: 10.2463/mrms.rev.2021-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
Over the last two decades, the status of MR safety has dramatically changed. In particular, ever since the MR-conditional cardiac device was approved by the Food and Drug Administration (FDA) in 2008 and by the Pharmaceuticals and Medical Devices Agency (PMDA) in 2012, the safety of patients with an implantable medical device (IMD) has been one of the most important issues in terms of MR use. In conjunction with the regulatory approvals for various IMDs, standards, technical specifications, and guidelines have also been rapidly created and developed. Many invaluable papers investigating and reviewing the history and status of MR use in the presence of IMDs already exist. As such, this review paper seeks to bridge the gap between clinical practice and the information that is obtained by standard-based tests and provided by an IMD's package insert or instructions for use. Interpretation of the gradient of the magnetic flux density intensity of the static magnetic field with respect to the magnetic displacement force is discussed, along with the physical background of RF field. The relationship between specific absorption rate (SAR) and B1+RMS, and their effects on image quality are described. In addition, insofar as providing new directions for future research and practice, the feasibility of safety test methods for RF-induced heating of IMDs using MR thermometry, evaluation of tissue heat damage, and challenges in cardiac IMDs will be discussed.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Satoshi Yatsushiro
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- Biosim Laboratory, Bioview, Inc., Tokyo, Japan
| |
Collapse
|