1
|
Thomas-Chemin O, Séverac C, Moumen A, Martinez-Rivas A, Vieu C, Le Lann MV, Trevisiol E, Dague E. Automated Bio-AFM Generation of Large Mechanome Data Set and Their Analysis by Machine Learning to Classify Cancerous Cell Lines. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44504-44517. [PMID: 39162348 DOI: 10.1021/acsami.4c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of standardization. In this work, we have optimized AFM mechanical measurement on cell populations and developed a technology combining cell patterning and AFM automation that has the potential to record data on hundreds of cells (956 cells measured for publication). On each cell, 16 force curves (FCs) and seven features/FC, constituting the mechanome, were calculated. All of the FCs were then classified using machine learning tools with a statistical approach based on a fuzzy logic algorithm, trained to discriminate between nonmalignant and cancerous cells (training base, up to 120 cells/cell line). The proof of concept was first made on prostate nonmalignant (RWPE-1) and cancerous cell lines (PC3-GFP), then on nonmalignant (Hs 895.Sk) and cancerous (Hs 895.T) skin fibroblast cell lines, and demonstrated the ability of our method to classify correctly 73% of the cells (194 cells in the database/cell line) despite the very high degree of similarity of the whole set of measurements (79-100% similarity).
Collapse
Affiliation(s)
| | - Childérick Séverac
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31100 Toulouse, France
| | | | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| | | | - Emmanuelle Trevisiol
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| |
Collapse
|
2
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
3
|
Rawling M, Schiavone M, Apper E, Merrifield DL, Castex M, Leclercq E, Foey A. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish ( Danio rerio). Front Immunol 2023; 14:1158390. [PMID: 37304290 PMCID: PMC10248512 DOI: 10.3389/fimmu.2023.1158390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Daniel L. Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
4
|
Agboola JO, Rocha SDC, Mensah DD, Hansen JØ, Øyås O, Lapeña D, Mydland LT, Arntzen MØ, Horn SJ, Øverland M. Effect of yeast species and processing on intestinal microbiota of Atlantic salmon (Salmo salar) fed soybean meal-based diets in seawater. Anim Microbiome 2023; 5:21. [PMID: 37016467 PMCID: PMC10074822 DOI: 10.1186/s42523-023-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.
Collapse
Affiliation(s)
- Jeleel O Agboola
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| | - Sérgio D C Rocha
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Dominic D Mensah
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Jon Ø Hansen
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Ove Øyås
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - David Lapeña
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Liv T Mydland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Margareth Øverland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
5
|
Light-driven single-cell rotational adhesion frequency assay. ELIGHT 2022; 2:13. [PMID: 35965781 PMCID: PMC9358104 DOI: 10.1186/s43593-022-00020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 01/13/2023]
Abstract
The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases.
Collapse
|
6
|
Liu Y, Ding H, Li J, Lou X, Yang M, Zheng Y. Light-driven single-cell rotational adhesion frequency assay. ELIGHT 2022; 2:13. [PMID: 35965781 DOI: 10.1186/s43593-022-00013-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 05/23/2023]
Abstract
UNLABELLED The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43593-022-00020-4.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jingang Li
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Xin Lou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingcheng Yang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
- Songshan Lake Materials Laboratory, Dongguan, 523808 Guangdong China
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
7
|
Purification, in-depth structure analysis and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus Jujuba cv. Muzaoresidue. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Agboola JO, Schiavone M, Øverland M, Morales-Lange B, Lagos L, Arntzen MØ, Lapeña D, Eijsink VGH, Horn SJ, Mydland LT, François JM, Mercado L, Hansen JØ. Impact of down-stream processing on functional properties of yeasts and the implications on gut health of Atlantic salmon (Salmo salar). Sci Rep 2021; 11:4496. [PMID: 33627754 PMCID: PMC7904851 DOI: 10.1038/s41598-021-83764-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.
Collapse
Affiliation(s)
- Jeleel Opeyemi Agboola
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Marion Schiavone
- grid.432671.5Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France ,grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ,grid.462430.70000 0001 2188 216XLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Margareth Øverland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Byron Morales-Lange
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Leidy Lagos
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Magnus Øverlie Arntzen
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - David Lapeña
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G. H. Eijsink
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- grid.19477.3c0000 0004 0607 975XFaculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Liv Torunn Mydland
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Jean Marie François
- grid.461574.50000 0001 2286 8343TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Luis Mercado
- grid.8170.e0000 0001 1537 5962Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
| | - Jon Øvrum Hansen
- grid.19477.3c0000 0004 0607 975XDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|