1
|
Dulfer EA, Föhse K, Taks EJM, Moorlag SJCFM, Koekenbier EL, van de Maat JS, Ten Oever J, Hoogerwerf JJ, van Werkhoven CH, Bonten MJM, van Hylckama Vlieg A, Rosendaal FR, Netea MG. The effect of BCG vaccination in the elderly on infectious and non-infectious immune-mediated diseases. J Infect 2024; 89:106344. [PMID: 39515666 DOI: 10.1016/j.jinf.2024.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Previous research has suggested beneficial heterologous effects of the Bacillus Calmette-Guérin (BCG) vaccine on non-mycobacterial infections and other immune-mediated diseases. During the COVID-19 pandemic, randomized controlled trials BCG-PRIME (n = 5349) and BCG-CORONA-ELDERLY (n = 1907) investigated the impact of BCG on SARS-CoV-2 infections in older individuals. We extended the follow-up in these studies by one year (BCG-Long Term study), to assess the overall effects of BCG vaccination on infectious and immune-mediated diseases in individuals aged over 60. METHODS Prior participants were invited to complete a one-year follow-up survey after their completion of the original trial. Data on vaccinations, hospital admissions, infectious episodes, and new medical diagnoses were collected and compared between BCG- and placebo-vaccinated participants. Variables of interest were combined with the previous trial databases and analyzed using relative risks (RR) and an adjusted Cox regression model accounting for participation probability. RESULTS The response in the follow-up survey was 60%, including 4238 individuals in the final analysis (2317 had received BCG and 1921 placebo). Incidence and severity of infectious diseases and other diagnoses, including cardiovascular diseases and cancer, did not differ between the groups. The proportion of individuals hospitalized for cardiac arrhythmias after BCG was two-fold higher than reported after placebo (1.6% versus 0.8%, RR 2.0 (95% confidence interval 1.1-3.6)). Cardiac arrhythmia-related hospitalizations were primarily due to exacerbation of pre-existing arrhythmias. CONCLUSION The results of the present study confirm that BCG has no relevant effect on non-mycobacterial infectious diseases and other immune-mediated diseases in a population of generally mycobacteria-naïve older Dutch individuals in the two years following vaccination. However, our study suggests that BCG may aggravate pre-existing cardiac arrhythmia, which warrants further investigation.
Collapse
Affiliation(s)
- Elisabeth A Dulfer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva L Koekenbier
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Josephine S van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun 2022; 13:878. [PMID: 35169141 PMCID: PMC8847416 DOI: 10.1038/s41467-022-28509-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
In addition to its role as a TB vaccine, BCG has been shown to elicit heterologous protection against many other pathogens including viruses through a process termed trained immunity. Despite its potential as a broadly protective vaccine, little has been done to determine if BCG-mediated trained immunity levels can be optimized. Here we re-engineer BCG to express high levels of c-di-AMP, a PAMP recognized by stimulator of interferon genes (STING). We find that BCG overexpressing c-di-AMP elicits more potent signatures of trained immunity including higher pro-inflammatory cytokine responses, greater myeloid cell reprogramming toward inflammatory and activated states, and enhances epigenetic and metabolomic changes. In a model of bladder cancer, we also show that re-engineered BCG induces trained immunity and improved functionality. These results indicate that trained immunity levels and antitumor efficacy may be increased by modifying BCG to express higher levels of key PAMP molecules.
Collapse
|
3
|
Qiu Q, Zou H, Zou H, Jing T, Li X, Yan G, Geng N, Zhang B, Zhang Z, Zhang S, Yao B, Zhang G, Zou C. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104961. [PMID: 34802511 DOI: 10.1016/j.pestbp.2021.104961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
As a typical glycolytic inhibitor, 3-bromopyruvate (3-BrPA) has been extensively studied in cancer therapy in recent decades. However, few studies focused on 3-BrPA in regulating the growth and development of insects, and the relationship and regulatory mechanism between glycolysis and chitin biosynthesis remain largely unknown. The Hyphantria cunea, named fall webworm, is a notorious defoliator, which caused a huge economic loss to agriculture and forestry. Here, we investigated the effects of 3-BrPA on the growth and development, glycolysis, carbohydrate homeostasis, as well as chitin synthesis in H. cunea larvae. To elucidate the action mechanism of 3-BrPA on H. cunea will provide a new insight for the control of this pest. The results showed that 3-BrPA dramatically restrained the growth and development of H. cunea larvae and resulted in larval lethality. Meanwhile, we confirmed that 3-BrPA caused a significant decrease in carbohydrate, adenosine triphosphate (ATP), pyruvic acid (PA), and triglyceride (TG) levels by inhibiting glycolysis in H. cunea larvae. Further studies indicated that 3-BrPA significantly affected the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and trehalase, as well as expressions of the genes related to glycolysis, resulting in carbohydrate homeostasis disorder. Moreover, it was found that 3-BrPA enhanced 20-hydroxyecdysone (20E) signaling by upregulating HcCYP306A1 and HcCYP314A1, two critical genes in 20E synthesis pathway, and accelerated chitin synthesis by upregulating transcriptional levels of genes in the chitin synthesis pathway in H. cunea larvae. Taken together, our findings provide a novel insight into the mechanism of glycolytic inhibitor in regulating the growth and development of insects, and lay a foundation for the potential application of glycolytic inhibitors in pest control as well.
Collapse
Affiliation(s)
- Qian Qiu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - XingPeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Gaige Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhidong Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
4
|
Koeken VA, de Bree LCJ, Mourits VP, Moorlag SJ, Walk J, Cirovic B, Arts RJ, Jaeger M, Dijkstra H, Lemmers H, Joosten LA, Benn CS, van Crevel R, Netea MG. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. J Clin Invest 2021; 130:5591-5602. [PMID: 32692728 DOI: 10.1172/jci133935] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDInduction of innate immune memory, also termed trained immunity, by the antituberculosis vaccine bacillus Calmette-Guérin (BCG) contributes to protection against heterologous infections. However, the overall impact of BCG vaccination on the inflammatory status of an individual is not known; while induction of trained immunity may suggest increased inflammation, BCG vaccination has been epidemiologically associated with a reduced incidence of inflammatory and allergic diseases.METHODSWe investigated the impact of BCG (BCG-Bulgaria, InterVax) vaccination on systemic inflammation in a cohort of 303 healthy volunteers, as well as the effect of the inflammatory status on the response to vaccination. A targeted proteome platform was used to measure circulating inflammatory proteins before and after BCG vaccination, while ex vivo Mycobacterium tuberculosis- and Staphylococcus aureus-induced cytokine responses in peripheral blood mononuclear cells were used to assess trained immunity.RESULTSWhile BCG vaccination enhanced cytokine responses to restimulation, it reduced systemic inflammation. This effect was validated in 3 smaller cohorts, and was much stronger in men than in women. In addition, baseline circulating inflammatory markers were associated with ex vivo cytokine responses (trained immunity) after BCG vaccination.CONCLUSIONThe capacity of BCG to enhance microbial responsiveness while dampening systemic inflammation should be further explored for potential therapeutic applications.FUNDINGNetherlands Organization for Scientific Research, European Research Council, and the Danish National Research Foundation.
Collapse
Affiliation(s)
- Valerie Acm Koeken
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - L Charlotte J de Bree
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Vera P Mourits
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone Jcfm Moorlag
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jona Walk
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Branko Cirovic
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Rob Jw Arts
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Jaeger
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Helga Dijkstra
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heidi Lemmers
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Ab Joosten
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christine S Benn
- Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Reinout van Crevel
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases and.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Adesanya OA, Uche-Orji CI, Adedeji YA, Joshua JI, Adesola AA, Chukwudike CJ. Expanded Scope of Bacillus Calmette-Guerin (BCG) Vaccine Applicability in Disease Prophylaxis, Diagnostics, and Immunotherapeutics. INFECTIOUS MICROBES & DISEASES 2020; 2:144-150. [PMID: 38630099 PMCID: PMC7769055 DOI: 10.1097/im9.0000000000000040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Following the discovery of the Bacillus Calmette-Guerin (BCG) vaccine, its efficacy against Mycobacterium tuberculosis was soon established, with several countries adopting universal BCG vaccination schemes for their populations. Soon, however, studies aimed to further establish the efficacy of the vaccine in different populations discovered that the vaccine has a larger effect in reducing mortality rate than could be explained by its effect on tuberculosis alone, which sparked suggestions that the BCG vaccine could have effects on other unrelated or non-mycobacterial pathogens causing diseases in humans. These effects were termed heterologous, non-specific or off-target effects and have been shown to be due to both innate and adaptive immune system responses. Experiments carried out in a bid to further understand these effects led to many more discoveries about the applicability of the BCG vaccine for the prevention, diagnosis, and treatment of certain disease conditions. As we approach the second century since the discovery of the vaccine, we believe it is timely to review these interesting applications of the BCG vaccine, such as in the prevention of diabetes, atherosclerosis, and leukemia; the diagnosis of Kawasaki disease; and the treatment of multiple sclerosis, non-muscle invading bladder cancer, and stage III melanoma. Furthermore, complications associated with the administration of the BCG vaccine to certain groups of patients, including those with severe combined immunodeficiency and HIV, have been well described in literature, and we conclude by describing the mechanisms behind these complications and discuss their implications on vaccination strategies, especially in low-resource settings.
Collapse
Affiliation(s)
- Oluwafolajimi A. Adesanya
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Yeshua A. Adedeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I. Joshua
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeniyi A. Adesola
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
6
|
Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L, González-Saldaña N, Sorensen RU. BCG: a vaccine with multiple faces. Hum Vaccin Immunother 2020; 16:1841-1850. [PMID: 31995448 DOI: 10.1080/21645515.2019.1706930] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BCG has been recommended because of its efficacy against disseminated and meningeal tuberculosis. The BCG vaccine has other mechanisms of action besides tuberculosis protection, with immunomodulatory properties that are now being discovered. Reports have shown a significant protective effect against leprosy. Randomized controlled trials suggest that BCG vaccine has beneficial heterologous (nonspecific) effects on mortality in some developing countries. BCG immunotherapy is considered the gold standard adjuvant treatment for non-muscle-invasive bladder cancer. BCG vaccine has also been tested as treatment for diabetes and multiple sclerosis. Erythema of the BCG site is recognized as a clinical clue in Kawasaki disease. BCG administration in the immunodeficient patient is associated with local BCG disease (BCGitis) or disseminated BCG disease (BCGosis) with fatal consequences. BCG administration has been associated with the development of autoimmunity. We present a brief review of the diverse facets of the vaccine, with the discovery of its new modes of action providing new perspectives on this old, multifaceted and controversial vaccine.
Collapse
Affiliation(s)
| | - Alberto Unzueta
- Gastroenterology and Transplant Hepatology, Geisinger Medical Center , Danville, PA, USA
| | | | | | - Ricardo U Sorensen
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Primary Immunodeficiency Network , New Orleans, LA, USA.,Faculty of Medicine, University of La Frontera , Temuco, Chile
| |
Collapse
|
7
|
Chang YC, Lin CJ, Hsiao YH, Chang YH, Liu SJ, Hsu HY. Therapeutic Effects of BCG Vaccination on Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Diabetes Res 2020; 2020:8954125. [PMID: 32309449 PMCID: PMC7139880 DOI: 10.1155/2020/8954125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) causes the irreversible destruction of pancreatic beta cells. The Bacillus Calmette-Guerin (BCG) vaccine can modulate the immune response and decelerate disease progression. The aim of this study is to investigate the efficacy of the BCG vaccine for the treatment of T1DM. OBJECTIVE Six databases were systematically searched from inception to the end of August 2019. The randomized controlled trials (RCTs) that evaluated glycemic control in response to the BCG vaccine for T1DM were enrolled. The primary outcome was glycated hemoglobin (HbA1c) level, and secondary outcomes included fasting and stimulated C-peptide level, daily insulin dosage, and clinical remission. The revised Cochrane risk of bias tool was used for quality assessment, and meta-analyses were conducted to evaluate the efficacy of the BCG vaccine. RESULTS Four studies with a total of 198 subjects were included. The results of HbA1c and fasting C-peptide levels were extracted for further quantitative assessment. The pooled meta-analysis demonstrated no significant difference in HbA1c levels (mean difference [MD], -0.12; 95% confidence interval [CI], -0.53 to 0.30; I 2 = 56%) or fasting C-peptide levels (MD, -0.15; 95% CI, -0.35 to 0.06; I 2 = 0%) in the BCG intervention group as compared with that in the placebo group. CONCLUSIONS There is no robust evidence to support the use of the BCG vaccine for the treatment of T1DM although the HbA1c levels tended to improve. Additional RCTs to assess the long-term effects of the BCG vaccine on glycemic control are warranted.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Department of Family Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, Taipei City 10449, Taiwan
| | - Chien-Ju Lin
- Department of Family Medicine, Hsinchu MacKay Memorial Hospital, No. 690, Section 2, Guangfu Road, East District, Hsinchu City 30071, Taiwan
| | - Yu-Hsuan Hsiao
- Department of Family Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, Taipei City 10449, Taiwan
| | - Yu-Han Chang
- Department of Family Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, Taipei City 10449, Taiwan
| | - Shu-Jung Liu
- Department of Medical Library, MacKay Memorial Hospital, Tamsui Branch, No. 45, Minsheng Road, Tamsui District, New Taipei City 25160, Taiwan
| | - Hsin-Yin Hsu
- Department of Family Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, Taipei City 10449, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, No. 17, Xu-Zhou Rd., Taipei City 10055, Taiwan
| |
Collapse
|