1
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross S, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. eLife 2025; 13:RP92635. [PMID: 39873665 PMCID: PMC11774516 DOI: 10.7554/elife.92635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- College of Health and Life Science, Hamad bin Khalifa UniversityDohaQatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
- Biological Sciences division, University of ChicagoChicagoUnited States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Steven Gross
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
2
|
Lemons AHS, Murphy B, Dengler JS, Salar S, Davies PA, Smalley JL, Moss SJ. Neuroactive steroids activate membrane progesterone receptors to induce sex specific effects on protein kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634751. [PMID: 39896469 PMCID: PMC11785215 DOI: 10.1101/2025.01.24.634751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Neuroactive steroids (NAS), which are synthesized in the brain from progesterone, exert potent effects on behavior and are used to treat postpartum depression, yet how these compounds induce sustained modifications in neuronal activity are ill-defined. Here, we examined the efficacy of NAS for membrane progesterone receptors (mPRs) δ and ε, members of a family of GPCRs for progestins that are expressed in the CNS. NAS increase PKC activity via G q activation of mPRδ with EC50s between 3-11nM. In contrast, they activate G s via mPRε to potentiate PKA activity with similar potencies. NAS also induced rapid internalization of only mPRδ. In the forebrain of female mice, mPRδ expression levels were 8-fold higher than males. Consistent with this, activation of PKC by NAS was evident in acute brain slices from female mice. Collectively, our results suggests that NAS may exert sex-specific effects on intracellular signaling in the brain via activation of mPRs.
Collapse
|
3
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Hossain MF, Hossain S, Sarwar Jyoti MM, Omori Y, Ahamed S, Tokumoto T. Establishment of a graphene quantum dot (GQD) based steroid binding assay for the nuclear progesterone receptor (pgr). Biochem Biophys Rep 2024; 38:101691. [PMID: 38571552 PMCID: PMC10987840 DOI: 10.1016/j.bbrep.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Previously, we established a homogeneous assay for membrane progesterone receptor alpha (mPRα) ligands by conjugating semiconductor nanoparticles known as graphene quantum dots (GQDs) to mPRα. When mixed with a progesterone-BSA-fluorescein isothiocyanate conjugate (P4-BSA-FITC), fluorescence occurred by fluorescence resonance energy transfer (FRET) but was reduced by the ligand-receptor binding activity. The established way showed ligand specificity as mPRα protein. In this study, we tried to establish the same way for nuclear progesterone receptor (Pgr). The ligand-binding domain (LBD) of zebrafish Pgr (zPgrLBD) was expressed as a fusion protein with glutathione S-transferase (GST) (GST-zPgrLBD). The recombinant protein was then purified and coupled with GQDs to produce GQD-conjugated GST-zPgrLBD (GQD-GST-zPgrLBD). When mixed with a P4-BSA-FITC and activated by 370 nm light, fluorescence at 520 nm appeared by FRET mechanism. Fluorescence at 520 nm was reduced by adding free progesterone to the reaction mixture. Reduction of fluorescence was induced by zPgr ligands but not by steroids or chemicals that do not interact with zPgr. The results showed the formation of a complex of GQD-GST-zPgrLBD and P4-BSA-FITC with ligand-receptor binding. The binding of the compounds was further confirmed by a radiolabeled steroid binding assay. A homogenous ligand-binding assay for nuclear progesterone receptor has been established.
Collapse
Affiliation(s)
- Md. Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shakhawat Hossain
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md. Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Omori
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Saokat Ahamed
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
5
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
6
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Kamińska J, Koper-Lenkiewicz OM, Ponikwicka-Tyszko D, Lebiedzińska W, Palak E, Sztachelska M, Bernaczyk P, Dorf J, Guzińska-Ustymowicz K, Zaręba K, Wołczyński S, Rahman NA, Dymicka-Piekarska V. New Insights on the Progesterone (P4) and PGRMC1/NENF Complex Interactions in Colorectal Cancer Progression. Cancers (Basel) 2023; 15:5074. [PMID: 37894441 PMCID: PMC10605590 DOI: 10.3390/cancers15205074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The literature data regarding the risk of colorectal cancer (CRC) in the context of hormone therapy (HT), including both estrogen-progestogen combinations and estrogen alone, are inconclusive. The precise relationship underlying the action of progesterone (P4) and progesterone receptors in CRC has yet to be determined. We characterized the expression profiles of both nuclear and membrane progesterone receptors and their potential cofactors in CRC tissues. Additionally, we analyzed the P4 and NENF treatment effects on the cell proliferation and invasion of DLD-1 and HT-29 colorectal cancer cells. We observed a weak expression of the nuclear P4 receptor (PGR), but an abundant expression of the P4 receptor membrane component 1 (PGRMC1) and neuron-derived neurotrophic factor (NENF) in the CRC tissues. P4 treatment stimulated the proliferation of the DLD-1 and HT-29 CRC cells. The co-treatment of P4 and NENF significantly increased the invasiveness of the DLD-1 and HT-29 cells. A functional analysis revealed that these effects were dependent on PGRMC1. AN immunocytochemical analysis demonstrated a cytoplasmic co-localization of PGRMC1 and NENF in the CRC cells. Moreover, the concentration of serum NENF was significantly higher in CRC patients, and P4 treatment significantly increased the release of NENF in the DLD-1 cells. P4 or NENF treatment also significantly increased the IL-8 release in the DLD-1 cells. Our data may provide novel insights into the action of P4 and PGRMC1/NENF in CRC progression, where NENF may act as a potential PGRMC1 co-activator in non-classical P4 signaling. Furthermore, NENF, as a secreted protein, potentially could serve as a promising circulating biomarker candidate for distinguishing between colorectal cancer patients and healthy individuals, although large-scale extensive studies are needed to establish this.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Weronika Lebiedzińska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
| | - Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (D.P.-T.); (E.P.); (M.S.)
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| | | | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, 15-094 Bialystok, Poland;
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
| | - Nafis Ahmed Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.L.); (S.W.)
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland;
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (O.M.K.-L.); (J.D.)
| |
Collapse
|
8
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
9
|
Zhang YY, Li MZ, Shen HH, Abudukeyoumu A, Xie F, Ye JF, Xu FY, Sun JS, Li MQ. Ginsenosides in endometrium-related diseases: Emerging roles and mechanisms. Biomed Pharmacother 2023; 166:115340. [PMID: 37625321 DOI: 10.1016/j.biopha.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Ginsenosides, agents extracted from an important herb (ginseng), are expected to provide new therapies for endometrium-related diseases. Based on the molecular types of ginsenosides, we reviewed the main pharmacological effects of ginsenosides against endometrium-related diseases (e.g., endometrial cancers, endometriosis, and endometritis). The mechanism of action of ginsenosides involves inducing apoptosis of endometrium-related cells, promoting autophagy of endometrium-related cells, regulating epithelial-mesenchymal transition (EMT) in endometrium-related cells, and activating the immune system to kill cells associated with endometrial diseases. We hope to provide a theoretical foundation for the treatment of endometrium-related diseases by ginsenosides.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Mao-Zhi Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai 201800, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
10
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Covey DF, Evers AS, Izumi Y, Maguire JL, Mennerick SJ, Zorumski CF. Neurosteroid enantiomers as potentially novel neurotherapeutics. Neurosci Biobehav Rev 2023; 149:105191. [PMID: 37085023 PMCID: PMC10750765 DOI: 10.1016/j.neubiorev.2023.105191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Endogenous neurosteroids and synthetic neuroactive steroids (NAS) are important targets for therapeutic development in neuropsychiatric disorders. These steroids modulate major signaling systems in the brain and intracellular processes including inflammation, cellular stress and autophagy. In this review, we describe studies performed using unnatural enantiomers of key neurosteroids, which are physiochemically identical to their natural counterparts except for rotation of polarized light. These studies led to insights in how NAS interact with receptors, ion channels and intracellular sites of action. Certain effects of NAS show high enantioselectivity, consistent with actions in chiral environments and likely direct interactions with signaling proteins. Other effects show no enantioselectivity and even reverse enantioselectivity. The spectrum of effects of NAS enantiomers raises the possibility that these agents, once considered only as tools for preclinical studies, have therapeutic potential that complements and in some cases may exceed their natural counterparts. Here we review studies of NAS enantiomers from the perspective of their potential development as novel neurotherapeutics.
Collapse
Affiliation(s)
- Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Dichiara M, Ambrosio FA, Barbaraci C, González-Cano R, Costa G, Parenti C, Marrazzo A, Pasquinucci L, Cobos EJ, Alcaro S, Amata E. Synthesis, Computational Insights, and Evaluation of Novel Sigma Receptors Ligands. ACS Chem Neurosci 2023; 14:1845-1858. [PMID: 37155827 DOI: 10.1021/acschemneuro.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The development of diazabicyclo[4.3.0]nonane and 2,7-diazaspiro[3.5]nonane derivatives as sigma receptors (SRs) ligands is reported. The compounds were evaluated in S1R and S2R binding assays, and modeling studies were carried out to analyze the binding mode. The most notable compounds, 4b (AD186, KiS1R = 2.7 nM, KiS2R = 27 nM), 5b (AB21, KiS1R = 13 nM, KiS2R = 102 nM), and 8f (AB10, KiS1R = 10 nM, KiS2R = 165 nM), have been screened for analgesic effects in vivo, and their functional profile was determined through in vivo and in vitro models. Compounds 5b and 8f reached the maximum antiallodynic effect at 20 mg/kg. The selective S1R agonist PRE-084 completely reversed their action, indicating that the effects are entirely dependent on the S1R antagonism. Conversely, compound 4b sharing the 2,7-diazaspiro[3.5]nonane core as 5b was completely devoid of antiallodynic effect. Interestingly, compound 4b fully reversed the antiallodynic effect of BD-1063, indicating that 4b induces an S1R agonistic in vivo effect. The functional profiles were confirmed by the phenytoin assay. Our study might establish the importance of 2,7-diazaspiro[3.5]nonane core for the development of S1R compounds with specific agonist or antagonist profile and the role of the diazabicyclo[4.3.0]nonane in the development of novel SR ligands.
Collapse
Affiliation(s)
- Maria Dichiara
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Carla Barbaraci
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rafael González-Cano
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Carmela Parenti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrique J Cobos
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
14
|
Ali M, Ciebiera M, Vafaei S, Alkhrait S, Chen HY, Chiang YF, Huang KC, Feduniw S, Hsia SM, Al-Hendy A. Progesterone Signaling and Uterine Fibroid Pathogenesis; Molecular Mechanisms and Potential Therapeutics. Cells 2023; 12:cells12081117. [PMID: 37190026 DOI: 10.3390/cells12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Uterine fibroids (UFs) are the most important benign neoplastic threat to women's health worldwide, with a prevalence of up to 80% in premenopausal women, and can cause heavy menstrual bleeding, pain, and infertility. Progesterone signaling plays a crucial role in the development and growth of UFs. Progesterone promotes the proliferation of UF cells by activating several signaling pathways genetically and epigenetically. In this review article, we reviewed the literature covering progesterone signaling in UF pathogenesis and further discussed the therapeutic potential of compounds that modulate progesterone signaling against UFs, including selective progesterone receptor modulator (SPRM) drugs and natural compounds. Further studies are needed to confirm the safety of SPRMs as well as their exact molecular mechanisms. The consumption of natural compounds as a potential anti-UFs treatment seems promising, since these compounds can be used on a long-term basis-especially for women pursuing concurrent pregnancy, unlike SPRMs. However, further clinical trials are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Stepan Feduniw
- Department of Gynecology, University of Zurich, 8091 Zurich, Switzerland
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|