1
|
Mele S, Martelli F, Barlow CK, Jefferies G, Dworkin S, Christodoulou J, Schittenhelm RB, Piper MDW, Johnson TK. Valine Restriction Extends Survival in a Drosophila Model of Short-Chain Enoyl-CoA Hydratase 1 (ECHS1) Deficiency. J Inherit Metab Dis 2025; 48:e12840. [PMID: 39727068 DOI: 10.1002/jimd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing. Here, we report on the establishment of a Drosophila model of ECHS1D. Flies carrying mutations in Echs1 (CG6543) were characterised for their physical and metabolic phenotypes, and dietary intervention to improve fly model health was explored. The Echs1 null larvae recapitulated human ECHS1D phenotypes including poor motor behaviour and early mortality and could be rescued by the expression of a human ECHS1 transgene. We observed that both restriction of valine in isolation, or all branched-chain amino acids (BCAAs-leucine, isoleucine and valine) together, extended larval survival, supporting the idea that reducing BCAA pathway catabolic flux is beneficial in this disorder. Further, metabolic profiling revealed substantial changes to carbohydrate metabolism, suggesting that Echs1 loss causes widespread metabolic dysregulation beyond valine metabolism. The similarities between Drosophila and human ECHS1D suggest that the fly model is a valuable animal system in which to explore mechanisms of pathogenesis and novel treatment options for this disorder.
Collapse
Affiliation(s)
- Sarah Mele
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Grace Jefferies
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Travis K Johnson
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
3
|
Demianchuk O, Lylyk M, Balatskiy V, Gospodaryov D, Bayliak M. Alpha-ketoglutarate supplementation in long-lived Drosophila melanogaster: Impact on lifespan and metabolic responses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22116. [PMID: 38739777 DOI: 10.1002/arch.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Studies on antiaging remedies in insect models sometimes show discrepancies in results. These discrepancies could be explained by different responses of short- and long-lived strains on the antiaging remedies. The purpose of the study was to test whether life-prolonging effects of alpha-ketoglutarate (AKG), observed in nematodes and fruit flies, would be reproduced in long-lived Drosophila melanogaster flies. Lifespan was assayed in flies kept in demographic cages. Fecundity, proportion of flies capable of negative geotaxis, starvation resistance, time of heat coma onset, levels of triacyglycerols, body glucose, glycogen, activities of glutamate dehydrogenase, catalase, glutathione-S-transferase, hexokinase, phosphofructokinase, pyruvate kinase, lactate, and glutamate dehydrogenases were assessed. Dietary AKG did not affect fly lifespan on the diet with 5% yeast and 5% sucrose (5Y:5S) and on the diet with 9% yeast and 1% sucrose (9Y:1S), but increased lifespan on the low-protein diet (1Y:9S). Twenty-five-day-old female flies fed a 5Y:5S diet with 10 mM AKG for 3 weeks, did not differ from the control group (without AKG) in climbing activity, resistance to heat stress, and starvation. The levels of glucose and glycogen were unaffected but the levels of triacylglycerols were lower in AKG-fed female flies. No differences in activities of glycolytic enzymes, NADPH-producing enzymes, glutamate dehydrogenase, oxygen consumption, and levels of oxidative stress markers were observed between the control and AKG-fed flies. However, AKG-fed flies had lower activities of catalase and glutathione-S-transferase. These results suggest that potential antiaging remedies, such as AKG, may not extend lifespan in long-living organisms despite influencing several metabolic parameters.
Collapse
Affiliation(s)
- Oleh Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Vitalii Balatskiy
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
4
|
Martelli F, Lin J, Mele S, Imlach W, Kanca O, Barlow CK, Paril J, Schittenhelm RB, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 2024; 43:113861. [PMID: 38416643 PMCID: PMC11037929 DOI: 10.1016/j.celrep.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jefferson Paril
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
5
|
Martelli F, Quig A, Mele S, Lin J, Fulton TL, Wansbrough M, Barlow CK, Schittenhelm RB, Johnson TK, Piper MDW. A defined diet for pre-adult Drosophila melanogaster. Sci Rep 2024; 14:6974. [PMID: 38521863 PMCID: PMC10960813 DOI: 10.1038/s41598-024-57681-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Drosophila melanogaster is unique among animal models because it has a fully defined synthetic diet available to study nutrient-gene interactions. However, use of this diet is limited to adult studies due to impaired larval development and survival. Here, we provide an adjusted formula that reduces the developmental period, restores fat levels, enhances body mass, and fully rescues survivorship without compromise to adult lifespan. To demonstrate an application of this formula, we explored pre-adult diet compositions of therapeutic potential in a model of an inherited metabolic disorder affecting the metabolism of branched-chain amino acids. We reveal rapid, specific, and predictable nutrient effects on the disease state consistent with observations from mouse and patient studies. Together, our diet provides a powerful means with which to examine the interplay between diet and metabolism across all life stages in an animal model.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Annelise Quig
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tahlia L Fulton
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Mia Wansbrough
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|