1
|
Newman AG, Vagstad AL, Storm P, Townsend CA. Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and rationale for catalytic reprogramming. J Am Chem Soc 2014; 136:7348-62. [PMID: 24815013 PMCID: PMC4046768 DOI: 10.1021/ja5007299] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/29/2022]
Abstract
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro "domain swapped" NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis.
Collapse
Affiliation(s)
- Adam G. Newman
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | | | - Philip
A. Storm
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Fitzgerald JT, Ridley CP, Khosla C. Engineered biosynthesis of the antiparasitic agent frenolicin B and rationally designed analogs in a heterologous host. J Antibiot (Tokyo) 2011; 64:759-62. [PMID: 21934692 PMCID: PMC3245331 DOI: 10.1038/ja.2011.86] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polyketide antibiotic frenolicin B harbors a biosynthetically intriguing benzoisochromanequinone core, and has been shown to exhibit promising antiparasitic activity against Eimeria tenella. To facilitate further exploration of its chemistry and biology, we constructed a biosynthetic route to frenolicin B in the heterologous host Streptomyces coelicolor CH999, despite the absence of key enzymes in the identified frenolicin gene cluster. Together with our understanding of the underlying polyketide biosynthetic pathway, this heterologous production system was exploited to produce analogs modified at the C15 position. Both the natural product and these analogs inhibited the growth of Toxoplasma gondii in a manner that reveals sensitivity to the length of the C15 substituent. The ability to construct a functional biosynthetic pathway, despite a lack of genetic information, illustrates the feasibility of a modular approach to engineering medicinally relevant polyketide products.
Collapse
Affiliation(s)
- Jay T Fitzgerald
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
3
|
Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol 2011; 90:11-21. [PMID: 21336932 DOI: 10.1007/s00253-011-3128-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Mupirocin is a polyketide antibiotic produced by Pseudomonas fluorescens. The biosynthetic cluster encodes 6 type I polyketide synthase multifunctional proteins and 29 single function proteins. The biosynthetic pathway belongs to the trans-AT group in which acyltransferase activity is provided by a separate polypeptide rather than in-cis as found in the original type I polyketide synthases. Special features of this group are in-cis methyltransferase domains and a trans-acting HMG-CoA synthase-cassette which insert α- and β- methyl groups respectively while enoyl reductase domains are absent from the condensing modules. In addition, for the mupirocin system, there is no obvious loading mechanism for initiation of the polyketide chain and many aspects of the pathway remain to be elucidated. Mupirocin inhibits isoleucyl-tRNA synthetase and has been used since 1985 to help prevent infection by methicillin-resistant Staphylococcus aureus, particularly within hospitals. Resistance to mupirocin was first detected in 1987 and high-level resistance in S. aureus is due to a plasmid-encoded second isoleucyl-tRNA synthetase, a more eukaryotic-like enzyme. Recent analysis of the biosynthetic pathway for thiomarinols from marine bacteria opens up possibilities to modify mupirocin so as to overcome this resistance.
Collapse
|
4
|
Das A, Szu PH, Fitzgerald JT, Khosla C. Mechanism and engineering of polyketide chain initiation in fredericamycin biosynthesis. J Am Chem Soc 2010; 132:8831-3. [PMID: 20540492 PMCID: PMC2904946 DOI: 10.1021/ja102517q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to incorporate atypical primer units through the use of dedicated initiation polyketide synthase (PKS) modules offers opportunities to expand the molecular diversity of polyketide natural products. Here we identify the initiation PKS module responsible for hexadienyl priming of the antibiotic fredericamycin and investigate its biochemical properties. We also exploit this PKS module for the design and in vivo biosynthesis of unusually primed analogues of a representative polyketide product, thereby emphasizing its utility to the metabolic engineer.
Collapse
Affiliation(s)
- Abhirup Das
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Ping-Hui Szu
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Jay T. Fitzgerald
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
5
|
Das A, Khosla C. In vivo and in vitro analysis of the hedamycin polyketide synthase. ACTA ACUST UNITED AC 2010; 16:1197-207. [PMID: 19942143 DOI: 10.1016/j.chembiol.2009.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/19/2009] [Accepted: 11/02/2009] [Indexed: 11/25/2022]
Abstract
Hedamycin is an antitumor polyketide antibiotic with unusual biosynthetic features. Earlier sequence analysis of the hedamycin biosynthetic gene cluster implied a role for type I and type II polyketide synthases (PKSs). We demonstrate that the hedamycin minimal PKS can synthesize a dodecaketide backbone. The ketosynthase (KS) subunit of this PKS has specificity for both type I and type II acyl carrier proteins (ACPs) with which it collaborates during chain initiation and chain elongation, respectively. The KS receives a C(6) primer unit from the terminal ACP domain of HedU (a type I PKS protein) directly and subsequently interacts with the ACP domain of HedE (a type II PKS protein) during the process of chain elongation. HedE is a bifunctional protein with both ACP and aromatase activity. Its aromatase domain can modulate the chain length specificity of the minimal PKS. Chain length can also be influenced by HedA, the C-9 ketoreductase. While co-expression of the hedamycin minimal PKS and a chain-initiation module from the R1128 PKS yields an isobutyryl-primed decaketide, the orthologous PKS subunits from the hedamycin gene cluster itself are unable to prime the minimal PKS with a nonacetyl starter unit. Our findings provide new insights into the mechanism of chain initiation and elongation by type II PKSs.
Collapse
Affiliation(s)
- Abhirup Das
- Department of Chemistry, Stanford University, CA 94305-5025, USA
| | | |
Collapse
|
6
|
Abstract
Natural products, produced chiefly by microorganisms and plants, can be large and structurally complex molecules. These molecules are manufactured by cellular assembly lines, in which enzymes construct the molecules in a stepwise fashion. The means by which enzymes interact and work together in a modular fashion to create diverse structural features has been an active area of research; the work has provided insight into the fine details of biosynthesis. A number of polycyclic aromatic natural products--including several noteworthy anticancer, antibacterial, antifungal, antiviral, antiparasitic, and other medicinally significant substances--are synthesized by polyketide synthases (PKSs) in soil-borne bacteria called actinomycetes. Concerted biosynthetic, enzymological, and structural biological investigations into these modular enzyme systems have yielded interesting mechanistic insights. A core module called the minimal PKS is responsible for synthesizing a highly reactive, protein-bound poly-beta-ketothioester chain. In the absence of other enzymes, the minimal PKS also catalyzes chain initiation and release, yielding an assortment of polycyclic aromatic compounds. In the presence of an initiation PKS module, polyketide backbones bearing additional alkyl, alkenyl, or aryl primer units are synthesized, whereas a range of auxiliary PKS enzymes and tailoring enzymes convert the product of the minimal PKS into the final natural product. In this Account, we summarize the knowledge that has been gained regarding this family of PKSs through recent investigations into the biosynthetic pathways of two natural products, actinorhodin and R1128 (A-D). We also discuss the practical relevance of these fundamental insights for the engineered biosynthesis of new polycyclic aromatic compounds. With a deeper understanding of the biosynthetic process in hand, we can assert control at various stages of molecular construction and thus introduce unnatural functional groups in the process. The metabolic engineer affords a number of new avenues for creating novel molecular structures that will likely have properties akin to their fully natural cousins.
Collapse
Affiliation(s)
| | - Chaitan Khosla
- Department of Chemistry
- Department of Chemical Engineering
- Department of Biochemistry, Stanford University, Stanford, California 94305-5025
| |
Collapse
|
7
|
Xu Z, Metsä-Ketelä M, Hertweck C. Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives. J Biotechnol 2009; 140:107-13. [DOI: 10.1016/j.jbiotec.2008.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/08/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
8
|
Ridley CP, Lee HY, Khosla C. Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci U S A 2008; 105:4595-600. [PMID: 18250311 PMCID: PMC2290765 DOI: 10.1073/pnas.0710107105] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Indexed: 11/18/2022] Open
Abstract
The emergence of resistant strains of human pathogens to current antibiotics, along with the demonstrated ability of polyketides as antimicrobial agents, provides strong motivation for understanding how polyketide antibiotics have evolved and diversified in nature. Insights into how bacterial polyketide synthases (PKSs) acquire new metabolic capabilities can guide future laboratory efforts in generating the next generation of polyketide antibiotics. Here, we examine phylogenetic and structural evidence to glean answers to two general questions regarding PKS evolution. How did the exceptionally diverse chemistry of present-day PKSs evolve? And what are the take-home messages for the biosynthetic engineer?
Collapse
Affiliation(s)
- Christian P. Ridley
- Departments of Chemistry, Chemical Engineering, and Biochemistry, Stanford University, Stanford, CA 94305
| | - Ho Young Lee
- Departments of Chemistry, Chemical Engineering, and Biochemistry, Stanford University, Stanford, CA 94305
| | - Chaitan Khosla
- Departments of Chemistry, Chemical Engineering, and Biochemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
9
|
Lee TS, Das A, Khosla C. Structure-activity relationships of semisynthetic mumbaistatin analogs. Bioorg Med Chem 2007; 15:5207-18. [PMID: 17524653 DOI: 10.1016/j.bmc.2007.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/08/2007] [Indexed: 11/18/2022]
Abstract
Mumbaistatin (1), a new anthraquinone natural product, is one of the most potent known inhibitors of hepatic glucose-6-phosphate translocase, an important target for the treatment of type II diabetes. Its availability, however, has been limited due to its extremely low yield from the natural source. Starting from DMAC (5, 3,8-dihydroxyanthraquinone-2-carboxylic acid), a structurally related polyketide product of engineered biosynthesis, we developed a facile semisynthetic method that afforded a variety of mumbaistatin analogs within five steps. This work was facilitated by the initial development of a DMAC overproduction system. In addition to reinforcing the biological significance of the anthraquinone moiety of mumbaistatin, several semisynthetic analogs were found to have low micromolar potency against the translocase in vitro. Two of them were also active in glucose release assays from primary hepatocytes. The synergistic combination of biosynthesis and synthesis is a promising avenue for the discovery of new bioactive substances.
Collapse
Affiliation(s)
- Taek Soon Lee
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
10
|
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 2007; 24:162-90. [PMID: 17268612 DOI: 10.1039/b507395m] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers advances in understanding of the biosynthesis of polyketides produced by type II PKS systems at the genetic, biochemical and structural levels.
Collapse
Affiliation(s)
- Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
Aklanonic acid, an anthraquinone natural product, is a common advanced intermediate in the biosynthesis of several antitumor polyketide antibiotics, including doxorubicin and aclacinomycin A. Intensive semisynthetic and biosynthetic efforts have been directed toward developing improved analogues of these clinically important compounds. The primer unit of such polyfunctional aromatic polyketides is an attractive site for introducing novel chemical functionality, and attempts have been made to modify the primer unit by precursor-directed biosynthesis or protein engineering of the polyketide synthase (PKS). We have previously demonstrated the feasibility of engineering bimodular aromatic PKSs capable of synthesizing unnatural hexaketides and octaketides. In this report, we extend this ability by preparing analogues of aklanonic acid, a decaketide, and its methyl ester. For example, by recombining the R1128 initiation module with the dodecaketide-specific pradimicin PKS, the isobutyryl-primed analogue of aklanonic acid (YT296b, 10) and its methyl ester (YT299b, 12) were prepared. In contrast, elongation modules from dodecaketide-specific spore pigment PKSs were unable to interact with the R1128 initiation module. Thus, in addition to revealing a practical route to new anthracycline antibiotics, we also observed a fundamental incompatibility between antibiotic and spore pigment biosynthesis in the actinomycetes bacteria.
Collapse
Affiliation(s)
| | - Chaitan Khosla
- Department of Chemistry
- Chemical Engineering, and
- Biochemistry, Stanford University, Stanford, California 94305
- *To whom correspondence should be addressed: Chaitan Khosla, Department of Chemistry, Chemical Engineering, and Biochemistry, Stanford University, Stanford, CA 94305. E-mail:
| | - Yi Tang
- Department of Chemical Engineering, University of California at Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|