Utille JP, Jeacomine I. Synthesis of a library of allyl α-l-arabinofuranosyl-α- or β-d-xylopyranosides; route to higher oligomers.
Carbohydr Res 2007;
342:2649-56. [PMID:
17904112 DOI:
10.1016/j.carres.2007.08.007]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 07/08/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Six isomeric disaccharides allyl 2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl-alpha-d-xylopyranosides and beta-d-xylopyranosides were synthetized by the stereoselective glycosylation of pure allyl alpha- or beta-d-xylopyranosides with 1-O-acetyl-2,3,5-tri-O-benzoyl-l-arabinofuranose as donor, catalyzed with BF(3).Et(2)O in DCM. Regio- and stereoselective glycosylation with excess of donor furnished almost exclusively the trisaccharides allyl 2,3-di-O-(2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl)-alpha- or beta-d-xylopyranosides. Extension of the reaction to the triol beta-d-xylopyranosyl-(1-->4)-1,2,3-tri-O-acetyl-alpha-d-xylopyranose, obtained from the 4-hydroxyl penta-O-acetyl-alpha-xylobiose, gave in the same manner the tetrasaccharide [2,3-di-O-(2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl)-beta-d-xylopyranosyl]-(1-->4)-1,2,3-tri-O-acetyl-alpha-d-xylopyranose. The protocol described herein should offer the possibility to produce branched oligosaccharides with a 2,3-di-O-(alpha-l-Ara(f))-beta-d-Xyl(p) block unit at the terminal non-reducing end.
Collapse