1
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
2
|
P. O’Donovan F, O’Leary EM, O’Sullivan TP. Synthesis and Biological Evaluation of Novel Thionucleosides. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for novel nucleosides has been a major research focus in medicinal
chemistry for several decades, particularly given their proven track record in the treatment
of viral infections and cancer. As bioisosteres of natural nucleosides, thionucleosides are
especially attractive targets as they often display improved biological activity. Furthermore,
the replacement of oxygen with sulfur may sometimes be accompanied by interesting
changes in pharmacological effect. This update covers recent advances in the preparation of
novel thionucleosides, grouped by synthetic strategy. The biological properties of the target
thionucleosides are also summarised, in addition to any reported structure activity relationships.
Collapse
Affiliation(s)
| | - Eileen M. O’Leary
- Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | | |
Collapse
|
3
|
Mineyeva IV. Functionalized 2-Substituted Allyl Bromides in the Barbier Allylation of (R)-2,3-O-Isopropylideneglyceraldehyde. Synthesis of the C8–C17, C8–C18, and C5–C17 Building Blocks of Laulimalides and Their Synthetic Analogs. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019040195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Toti K, Renders M, Groaz E, Herdewijn P, Van Calenbergh S. Nucleosides with Transposed Base or 4'-Hydroxymethyl Moieties and Their Corresponding Oligonucleotides. Chem Rev 2015; 115:13484-525. [PMID: 26655745 DOI: 10.1021/acs.chemrev.5b00545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates, their stereoisomers, and their close analogues. The biological activities of all known 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates as potential antiviral or anticancer agents are compiled. The routes that have been taken for the chemical synthesis of such nucleoside derivatives are described, with special attention to the innovative strategies. The enzymatic synthesis, base-pairing properties, structure, and stability of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides are discussed. The use of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides as small oligonucleotide (e.g., human immunodeficiency virus integrase) inhibitors, in applications such as antisense therapy, silencing RNA (siRNA), or aptamer selections, is detailed.
Collapse
Affiliation(s)
- Kiran Toti
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Marleen Renders
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Benetti S, De Risi C, Pollini GP, Zanirato V. Synthetic Routes to Chiral Nonracemic and Racemic Dihydro- And Tetrahydrothiophenes. Chem Rev 2012; 112:2129-63. [DOI: 10.1021/cr200298b] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Carmela De Risi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Gian P. Pollini
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Vinicio Zanirato
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 19, 44121 Ferrara, Italy
| |
Collapse
|
6
|
|
7
|
YUE X, QIU X, QING F. Metal-mediatedgem-Difluoroallylation ofN-Acylhydrazones: Highly Efficient Synthesis ofα,α-Difluorohomoallylic Amines. CHINESE J CHEM 2009. [DOI: 10.1002/cjoc.200990007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Janosik T, Bergman J. Chapter 5.1: Five-membered ring systems: thiophenes and Se/Te analogs. A CRITICAL REVIEW OF THE 2007 LITERATURE PRECEDED BY TWO CHAPTERS ON CURRENT HETEROCYCLIC TOPICS 2009. [DOI: 10.1016/s0959-6380(09)70009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Yue X, Zhang X, Qing FL. Highly Diastereoselective Zn/SnCl2-Mediated gem-Difluoroallylation of Chiral Hydrazones. Org Lett 2008; 11:73-6. [DOI: 10.1021/ol802361p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuyi Yue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
10
|
Francisco CG, González CC, Kennedy AR, Paz NR, Suárez E. Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols. Chemistry 2008; 14:6704-12. [PMID: 18576400 DOI: 10.1002/chem.200800734] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new general methodology for the synthesis of 1,1,1-trihaloalditols by starting from 1,5-anhydro-2-deoxy-hex-1-enitol derivatives (glycals) is described. The halogens are introduced sequentially in each of the three different steps of the process. The fluorine is introduced in the first step by electrophilic fluorination of the starting glycal; next, hydroxyhalogenation of the resulting vinyl fluoride allows the addition of any halogen (F, Cl, Br or I) at will, and finally, an iodine atom is inserted through an alkoxyl radical fragmentation reaction. This methodology allows the preparation of diverse types of 1,1,1-trihalogenated compounds (R--CF(2)I, R--CFI(2), R--CFClI and R--CFBrI) under mild conditions compatible with sensitive substituents. In some cases, the diastereomeric mixtures generated from R--CFClI and R--CFBrI can be chromatographically separated, and their configuration determined by X-ray crystallographic analysis. The synthetic usefulness of these compounds has been preliminarily assessed by examining the reactivity of the fluorinated radical generated by rupture of the C--I bond.
Collapse
Affiliation(s)
- Cosme G Francisco
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientificas, Carretera de La Esperanza 3, La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
11
|
|