1
|
Teng HD, Tan CY, He YN, Cai XH, Chen G. Search for Snail Repellents: Antimollusc Activities from Stemona parviflora and Six Other Chinese Stemona Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6203-6212. [PMID: 38483144 DOI: 10.1021/acs.jafc.3c07103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Snails are important agricultural pests difficult to control, but data regarding molluscicidal assays are scant. Stemona alkaloids are typical secondary metabolites for the taxa and have been broadly investigated for their pharmacological and toxicological effects. This makes it possible for us to further develop the toxicities of these compounds to snails. In this work, we tested the antifeedant properties of leaves from seven Chinese Stemona species against the land snail species Bradybaena ravida in choice and non-choice feeding assays. The tested leaves Stemona parviflora exhibited the most deterrent effects, and a further phytochemical investigation of aerial parts led to the identification of 16 alkaloids. Among them, three novel alkaloids could be identified. The alkaloidal fraction and single alkaloids were further assayed against this snail species, and the results suggest a cocktail effect because the impact of the alkaloidal fraction was higher than the effects caused by single alkaloids. The study can promote the search process of natural antimollusc products from plants to control snails.
Collapse
Affiliation(s)
- Hui-Dan Teng
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Yong Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Yan-Ni He
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, People's Republic of China
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Gao Chen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Bitchagno GTM, Nchiozem-Ngnitedem VA, Melchert D, Fobofou SA. Demystifying racemic natural products in the homochiral world. Nat Rev Chem 2022; 6:806-822. [PMID: 36259059 PMCID: PMC9562063 DOI: 10.1038/s41570-022-00431-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Natural products possess structural complexity, diversity and chirality with attractive functions and biological activities that have significantly impacted drug discovery initiatives. Chiral natural products are abundant in nature but rarely occur as racemates. The occurrence of natural products as racemates is very intriguing from a biosynthetic point of view; as enzymes are chiral molecules, enzymatic reactions generating natural products should be stereospecific and lead to single-enantiomer products. Despite several reports in the literature describing racemic mixtures of stereoisomers isolated from natural sources, there has not been a comprehensive review of these intriguing racemic natural products. The discovery of many more natural racemates and their potential enzymatic sources in recent years allows us to describe the distribution and chemical diversity of this 'class of natural products' to enrich discussions on biosynthesis. In this Review, we describe the chemical classes, occurrence and distribution of pairs of enantiomers in nature and provide insights about recent advances in analytical methods used for their characterization. Special emphasis is on the biosynthesis, including plausible enzymatic and non-enzymatic formation of natural racemates, and their pharmacological significance.
Collapse
Affiliation(s)
- Gabin Thierry M. Bitchagno
- Agrobiosciences, Mohamed IV Polytechnic University, Ben-Guerir, Morocco
- Plant Sciences and Bioeconomy, Rothamsted Research, Harpenden, UK
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Vaderament-A. Nchiozem-Ngnitedem
- Department of Chemistry, University of Dschang, Dschang, Cameroon
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Dennis Melchert
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Serge Alain Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| |
Collapse
|
3
|
He QF, Wu ZL, Huang XJ, Xia TQ, Tang G, Tang W, Shi L, Ye WC, Wang Y. Cajanusoids A-D, Unusual Atropisomeric Stilbene Dimers with PTP1B Inhibitory Activities from the Leaves of Cajanus cajan. J Org Chem 2021; 86:5870-5882. [PMID: 33829799 DOI: 10.1021/acs.joc.1c00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four novel stilbene dimers (1-4), together with their biosynthetically related stilbene monomers (5 and 6), were isolated from the leaves of Cajanus cajan. Their structures with absolute configurations were determined by comprehensive analysis of spectroscopic data and electronic circular dichroism calculations. Compounds 1 and 2 are two novel dimeric stilbenes with an unusual coupling pattern that resulted in a rare configurationally stable Csp2-Csp3 chiral axis with both point and axial chirality in their molecules. Due to their unique inherent structural features, both of them naturally occur as equilibrating mixtures of unequally populated atropo-diastereomers and their respective enantiomers. Compounds 3 and 4 are two pairs of novel dimeric stilbene atropisomers featuring a rotationally hindered central biaryl axis. Notably, 3 contains a rare arylbenzoquinone core and 4 is a symmetric dimer with a C2 symmetry axis. The hypothetical biosynthetic pathway of 1-4 was also proposed herein. All the new compounds exhibited significant protein tyrosine phosphatase-1B (PTP1B) inhibition effects. In addition, the preliminary mode of action for the most potent compound 3 was investigated by molecular docking and binding free energy calculation.
Collapse
Affiliation(s)
- Qi-Fang He
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tian-Qi Xia
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Genyun Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.,School of Medicine, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lei Shi
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
4
|
Silakari P, Priyanka, Piplani P. p-Benzoquinone as a Privileged Scaffold of Pharmacological Significance: A Review. Mini Rev Med Chem 2020; 20:1586-1609. [DOI: 10.2174/1389557520666200429101451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Quinones are a huge class of compounds with affluent and captivating chemistry.
p-Benzoquinone (p-BNZ) or 1,4-Benzoquinone is the key structural motif of numerous biologically active
synthetic and natural compounds. This draws interest in its biological exploration to assess prospective
therapeutic implications. It possesses immense therapeutic potential depending on different
substitutions. This moiety has a marvelous potential to regulate a varied range of different cellular
pathways which can be investigated for various selective activities. p-Benzoquinones have been a requisite
core for the development of novel therapeutic molecules with minimum side effects. In this review,
various synthetic, pharmacological approaches and structure-activity relationship studies focusing
on the chemical groups responsible for evoking the pharmacological potential of p-benzoquinone
derivatives have been emphasized. Additionally, the compilation highlights the chemical, pharmaceutical
and medicinal aspects of synthetic and natural benzoquinone derivatives. The natural occurrences
of p-benzoquinone derivatives with different pharmacological significance have also been reported in
this review.
Collapse
Affiliation(s)
- Pragati Silakari
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Priyanka
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
5
|
Fayez S, Feineis D, Assi LA, Seo EJ, Efferth T, Bringmann G. Ancistrobreveines A–D and related dehydrogenated naphthylisoquinoline alkaloids with antiproliferative activities against leukemia cells, from the West African lianaAncistrocladus abbreviatus. RSC Adv 2019; 9:15738-15748. [PMID: 35521375 PMCID: PMC9064271 DOI: 10.1039/c9ra03105g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022] Open
Abstract
A unique series of six biaryl natural products displaying four different coupling types (5,1′, 7,1′, 7,8′, and 5,8′) were isolated from the roots of the West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Although at first sight structurally diverse, these secondary metabolites all have in common that they belong to the rare group of naphthylisoquinoline alkaloids with a fully dehydrogenated isoquinoline portion. Among the African Ancistrocladus species, A. abbreviatus is so far only the second one that was found to produce compounds with such a molecular entity. Here, we report on four new representatives, named ancistrobreveines A–D (12–14, and 6). They were identified along with the two known alkaloids 6-O-methylhamateine (4) and ent-dioncophylleine A (10). The two latter naphthylisoquinolines had so far only been detected in Ancistrocladus species from Southeast Asia. All of these fully dehydrogenated alkaloids have in common being optically active despite the absence of stereogenic centers, due to the presence of the rotationally hindered biaryl axis as the only element of chirality. Except for ent-dioncophylleine A (10), which lacks an oxygen function at C-6, the ancistrobreveines A–D (12–14, and 6) and 6-O-methylhamateine (4) are 6-oxygenated alkaloids, and are, thus, typical ‘Ancistrocladaceae-type’ compounds. Ancistrobreveine C (14), is the first – and so far only – example of a 7,8′-linked fully dehydrogenated naphthylisoquinoline discovered in nature that is configurationally stable at the biaryl axis. The stereostructures of the new alkaloids were established by spectroscopic (in particular HRESIMS, 1D and 2D NMR) and chiroptical (electronic circular dichroism) methods. Ancistrobreveine C (14) and 6-O-methylhamateine (4) exhibited strong antiproliferative activities against drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Ancistrobreveines A–D belong to the rare group of naphthylisoquinoline alkaloids with a non-hydrogenated isoquinoline portion, some of them, like ancistrobreveine C, occurring in the plants only in a scalemic, yet nearly enantiopure form.![]()
Collapse
Affiliation(s)
- Shaimaa Fayez
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Doris Feineis
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Laurent Aké Assi
- Centre National de Floristique
- Conservatoire et Jardin Botanique
- Université d`Abidjan
- Abidjan 08
- Ivory Coast
| | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry
- Department of Pharmaceutical Biology
- University of Mainz
- D-55128 Mainz
- Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry
- Department of Pharmaceutical Biology
- University of Mainz
- D-55128 Mainz
- Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
6
|
Abstract
Concise syntheses of parvistemin A and diperezone are achieved using ring expansion of cyclobutenones and oxidative phenolic coupling under basic conditions.
Collapse
Affiliation(s)
- Songsong Gao
- School of Chemistry & Material Science
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China
- Northwest University
- Xi'an 710127
- China
| | - Xiangdong Hu
- School of Chemistry & Material Science
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
7
|
Greger H. The diversity of Stemona stilbenoids as a result of storage and fungal infection. JOURNAL OF NATURAL PRODUCTS 2012; 75:2261-2268. [PMID: 23245693 DOI: 10.1021/np300690c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In relation to their biogenetic origin, 68 Stemona stilbenoids have been grouped into four structural types and are listed in order of increasing substitution pattern. Besides different hydroxylations and methoxylations, the rare C-methylations of the aromatic rings represent a typical chemical feature of these compounds. The formation of phenylbenzofurans constitutes another important chemical character separating Stemona species into two groups consistent with morphological and DNA data. Fungal infection leads to an increasing accumulation of stilbenes, dihydrostilbenes, and phenylbenzofurans with unsubstituted A-rings, suggesting the ecological role of these compounds as phytoalexins. Further oxygenations and methylations of both rings are interpreted as a result of aging or the drying processes. Bioautographic tests on TLC plates and germ-tube inhibition assays in microwells against four different fungi exhibited antifungal activities for almost all stilbenoids tested. Some derivatives also showed effects against yeasts and bacteria. Further activities may also be seen as dormancy-inducing factors of Stemona species occurring in periodically dry habitats. A leucotriene biosynthesis inhibition assay using 15 stilbenoids showed interesting structure-activity relationships, with more potent effects of some compounds than the commercial 5-lipoxygenase inhibitor zileuton being observed. Potential neuroprotective activities have been reported for three dihydrostilbene glucosides against 6-hydroxydopamine-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty Center of Biodiversity, University of Vienna, Rennweg 14, A-1030 Wien, Austria.
| |
Collapse
|
8
|
Smith MJ, Nawrat CC, Moody CJ. Synthesis of Parvistemin A via Biomimetic Oxidative Dimerization. Org Lett 2011; 13:3396-8. [DOI: 10.1021/ol201246e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcus J. Smith
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christopher C. Nawrat
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christopher J. Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
9
|
Pilli RA, Rosso GB, de Oliveira MDCF. The chemistry of Stemona alkaloids: An update. Nat Prod Rep 2010; 27:1908-37. [DOI: 10.1039/c005018k] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Bringmann G, Bruhn T, Maksimenka K, Hemberger Y. The Assignment of Absolute Stereostructures through Quantum Chemical Circular Dichroism Calculations. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801121] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, Fax: +49‐931‐888‐4755
| | - Torsten Bruhn
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, Fax: +49‐931‐888‐4755
| | - Katja Maksimenka
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, Fax: +49‐931‐888‐4755
| | - Yasmin Hemberger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, Fax: +49‐931‐888‐4755
| |
Collapse
|
11
|
Bringmann G, Gulder TA, Reichert M, Gulder T. The online assignment of the absolute configuration of natural products: HPLC-CD in combination with quantum chemical CD calculations. Chirality 2008; 20:628-42. [DOI: 10.1002/chir.20557] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|