1
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Joffrin AM, Saunders AM, Barneda D, Flemington V, Thompson AL, Sanganee HJ, Conway SJ. Development of isotope-enriched phosphatidylinositol-4- and 5-phosphate cellular mass spectrometry probes. Chem Sci 2021; 12:2549-2557. [PMID: 34820112 PMCID: PMC8607509 DOI: 10.1039/d0sc06219g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphatidylinositol phosphate (PtdInsPn) derivatives play a pivotal role in broadening our understanding of PtdInsPn metabolism. However, the development of such tools is reliant on efficient enantioselective and regioselective synthetic strategies. Here we report the development of a divergent synthetic route applicable to the synthesis of deuterated PtdIns4P and PtdIns5P derivatives. The synthetic strategy developed involves a key enzymatic desymmetrisation step using Lipozyme TL-IM®. In addition, we optimised the large-scale synthesis of deuterated myo-inositol, allowing for the preparation of a series of saturated and unsaturated deuterated PtdIns4P and PtdIns5P derivatives. Experiments in MCF7 cells demonstrated that these deuterated probes enable quantification of the corresponding endogenous phospholipids in a cellular setting. Overall, these deuterated probes will be powerful tools to help improve our understanding of the role played by PtdInsPn in physiology and disease. We report the synthesis of deuterium-labelled derivatives of phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, and demonstrate their use in quantifying levels of endogenous phospholipids in cells.![]()
Collapse
Affiliation(s)
- Amélie M Joffrin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alex M Saunders
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David Barneda
- Inositide Laboratory, Babraham Institute Babraham Research Campus Cambridge CB22 3AT UK.,Bioscience, Oncology R&D, AstraZeneca Cambridge CB4 0WG UK
| | | | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Hitesh J Sanganee
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
3
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
4
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
5
|
Lee J, Borovika A, Khomutnyk Y, Nagorny P. Chiral phosphoric acid-catalyzed desymmetrizative glycosylation of 2-deoxystreptamine and its application to aminoglycoside synthesis. Chem Commun (Camb) 2017; 53:8976-8979. [DOI: 10.1039/c7cc05052f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work describes chiral phosphoric acid (CPA)-catalyzed desymmetrizative glycosylation ofmeso-diol derived from 2-deoxystreptamine.
Collapse
Affiliation(s)
- Jeonghyo Lee
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| | - Alina Borovika
- Bristol-Myers-Squibb Co. 1 Squibb Dr. New Brunswick
- NJ 08901
- USA
| | | | - Pavel Nagorny
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| |
Collapse
|
6
|
Murray JI, Woscholski R, Spivey AC. Highly efficient and selective phosphorylation of amino acid derivatives and polyols catalysed by 2-aryl-4-(dimethylamino)pyridine-N-oxides--towards kinase-like reactivity. Chem Commun (Camb) 2015; 50:13608-11. [PMID: 25248055 DOI: 10.1039/c4cc05388e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chemoselective phosphorylation of hydroxyl containing amino acid derivatives and polyols by phosphoryl chlorides catalyzed by 2-aryl-4-(dimethylamino)pyridine-N-oxides is described.
Collapse
Affiliation(s)
- James I Murray
- Department of Chemistry, South Kensington Campus, Imperial College London, SW7 2AZ, UK.
| | | | | |
Collapse
|
7
|
Chandler BD, Burkhardt AL, Foley K, Cullis C, Driscoll D, D’Amore NR, Miller SJ. A fully synthetic and biochemically validated phosphatidyl inositol-3-phosphate hapten via asymmetric synthesis and native chemical ligation. J Am Chem Soc 2014; 136:412-8. [PMID: 24344932 PMCID: PMC3919123 DOI: 10.1021/ja410750a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and biochemical validation of a phosphatidyl inositol-3 phosphate (PI3P) immunogen. The inositol stereochemistry was secured through peptide-catalyzed asymmetric phosphorylation catalysis, and the subsequent incorporation of a cysteine residue was achieved by native chemical ligation (NCL). Conjugation of the PI3P hapten to maleimide-activated keyhole limpet hemocyanin (KLH) provided a PI3P immunogen, which was successfully used to generate selective PI3P antibodies. The incorporation of a sulfhydryl nucleophile into a phosphoinositide hapten demonstrates a general strategy to reliably access phosphoinositide immunogens.
Collapse
Affiliation(s)
| | - Anne L. Burkhardt
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Klaudia Foley
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Courtney Cullis
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Denise Driscoll
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Natalie Roy D’Amore
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, USA
| |
Collapse
|
8
|
Varvogli AAC, Fylaktakidou KC, Farmaki T, Stefanakis JG, Koumbis AE. Versatile Synthesis of 1- O-(ω-Aminolauryl)-I(4,5)P 2. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: enantioselective synthesis of D-myo-inositol-6-phosphate. Proc Natl Acad Sci U S A 2010; 107:20620-4. [PMID: 20439750 DOI: 10.1073/pnas.1001111107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the ubiquitous use of phosphoramidite chemistry in the synthesis of biophosphates, catalytic asymmetric phosphoramidite transfer remains largely unexplored for phosphate ester synthesis. We have discovered that a tetrazole-functionalized peptide, in the presence of 10-Å molecular sieves, functions as an enantioselective catalyst for phosphite transfer. This chemistry in turn has been used as the key step in a streamlined synthesis of myo-inositol-6-phosphate. Mechanistic insights implicate phosphate as a directing group for a highly selective kinetic resolution of a protected inositol monophosphate. This work represents a distinct and efficient method for the selective catalytic phosphorylation of natural products.
Collapse
|
10
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Conway SJ, Gardiner J, Grove SJA, Johns MK, Lim ZY, Painter GF, Robinson DEJE, Schieber C, Thuring JW, Wong LSM, Yin MX, Burgess AW, Catimel B, Hawkins PT, Ktistakis NT, Stephens LR, Holmes AB. Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Org Biomol Chem 2009; 8:66-76. [PMID: 20024134 DOI: 10.1039/b913399b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs. Removal of the remaining protecting groups was achieved via hydrogenolysis using palladium black or palladium hydroxide on carbon in the presence of sodium bicarbonate to afford the complete family of dipalmitoyl- and amino-PIP analogues 42, 45, 50, 51, 58, 59, 67, 68, 76, 77, 82, 83, 92, 93, 99 and 100. Investigations using affinity probes incorporating these compounds have identified novel proteins involved in the PI3K intracellular signalling network and have allowed a comprehensive proteomic analysis of phosphoinositide interacting proteins.
Collapse
Affiliation(s)
- Stuart J Conway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Keddie NS, Bultynck G, Luyten T, Slawin AM, Conway SJ. A type 2 Ferrier rearrangement-based synthesis of d-myo-inositol 1,4,5-trisphosphate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Tlais SF, Lam H, House SE, Dudley GB. New Strategies for Protecting Group Chemistry: Synthesis, Reactivity, and Indirect Oxidative Cleavage of para-Siletanylbenzyl Ethers. J Org Chem 2009; 74:1876-85. [DOI: 10.1021/jo802229p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sami F. Tlais
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| | - Hubert Lam
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| | - Sarah E. House
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| | - Gregory B. Dudley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390
| |
Collapse
|