1
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Arteaga Giraldo JJ, Lindsay AC, Seo RCY, Kilmartin PA, Sperry J. Electrochemical oxidation of 3-substituted indoles. Org Biomol Chem 2023. [PMID: 37366580 DOI: 10.1039/d3ob00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
2-Oxindoles are an abundant heteroaromatic motif in natural products and pharmaceuticals. An appealing method for accessing 2-oxindoles is by oxidation of the corresponding indole, a transformation currently executed using stoichiometric quantities of unsafe chemical oxidants that can also form unwanted side-products. Herein, we report that 3-substituted indoles undergo a logistically straightforward, electrochemical oxidation to the corresponding 2-oxindole in the presence of potassium bromide (>20 examples), with only traces of the oxidative dimer detected. Cyclic voltammetry and control studies infer that the reaction proceeds by electrochemical generation of elemental bromine (Br2) that upon reaction with indole, followed by hydrolysis, delivers the 2-oxindole. This procedure is an appealing alternative to existing methods used to access 2-oxindoles by oxidation of the parent indole.
Collapse
Affiliation(s)
- Juan J Arteaga Giraldo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Ashley C Lindsay
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Rachel Chae-Young Seo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Paul A Kilmartin
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
3
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|
4
|
Wang J, Chen Y, Du W, Chen N, Fu K, He Q, Shao L. Green oxidative rearrangement of indoles using halide catalyst and hydrogen peroxide. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Wenholz DS, Miller M, Dawson C, Bhadbhade M, Black DS, Griffith R, Dinh H, Cain A, Lewis P, Kumar N. Inhibitors of bacterial RNA polymerase transcription complex. Bioorg Chem 2021; 118:105481. [PMID: 34801947 DOI: 10.1016/j.bioorg.2021.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/28/2023]
Abstract
A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 μM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.
Collapse
Affiliation(s)
- Daniel S Wenholz
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Catherine Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Renate Griffith
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Hue Dinh
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy Cain
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia.
| |
Collapse
|
6
|
Liang P, Zhao H, Zhou T, Zeng K, Jiao W, Pan Y, Liu Y, Fang D, Ma X, Shao H. Rapid Oxidation Indoles into 2‐Oxindoles Mediated by PIFA in Combination with
n
‐Bu
4
NCl ⋅ H
2
O. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng Liang
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Hang Zhao
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Tingting Zhou
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Kaiyun Zeng
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Yazhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Dongmei Fang
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| |
Collapse
|
7
|
Sahu A, Balhara A, Raju N, Kumar BK, Sharma P, Singh DK, Singh S. Characterization of degradation products of celiprolol hydrochloride using hyphenated mass and NMR techniques. J Pharm Biomed Anal 2021; 197:113953. [PMID: 33618130 DOI: 10.1016/j.jpba.2021.113953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Stress degradation studies were carried out on celiprolol hydrochloride under the ICH prescribed hydrolysis (acidic, basic and neutral), photolytic, oxidative and thermal conditions. Maximum degradation was observed upon hydrolysis, especially in the basic condition. In oxidative condition, the drug degraded only upon severe exposure to H2O2, but it remained stable when challenged with AIBN. It also degraded significantly under photolytic conditions. However, the drug was stable to thermal stress. A total of seven degradation products were formed, whose separation was successfully achieved on an Inertsil ODS-3V C-18 HPLC column employing a gradient mobile phase. A comprehensive mass fragmentation pattern of the drug was initially established through the support of high resolution mass spectrometry (HR-MS), multi-stage tandem mass spectrometry (MSn) and on-line H/D exchange MS data. The same approach was then extended to characterization of the degradation products. Additionally, two degradation products were isolated and subjected to 1D/2D NMR studies for their structural confirmation. One of the degradation products showed instability during isolation, therefore, it was subjected to LC-NMR studies for its structural confirmation.
Collapse
Affiliation(s)
- Archana Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Nenavath Raju
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Banothu Kranthi Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Parul Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Dilip Kumar Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India.
| |
Collapse
|
8
|
Abstract
In recent years, Dakin oxidation has evolved primarily around the conversion of ortho- and para-hydroxy benzaldehydes and acetophenones to dihydric phenols, which are found in nature and complex organic materials.
Collapse
Affiliation(s)
- Porag Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, India
| | - Bondana Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, India
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, India
| |
Collapse
|
9
|
Kellert M, Sárosi I, Rajaratnam R, Meggers E, Lönnecke P, Hey-Hawkins E. Ruthenacarborane-Phenanthroline Derivatives as Potential Metallodrugs. Molecules 2020; 25:molecules25102322. [PMID: 32429279 PMCID: PMC7287719 DOI: 10.3390/molecules25102322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/28/2023] Open
Abstract
Ruthenium-based complexes have received much interest as potential metallodrugs. In this work, four RuII complexes bearing a dicarbollide moiety, a carbonyl ligand, and a phenanthroline-based ligand were synthesized and characterized, including single crystal diffraction analysis of compounds 2, 4, and 5 and an observed side product SP1. Complexes 2-5 are air and moisture stable under ambient conditions. They show excellent solubility in organic solvents, but low solubility in water.
Collapse
Affiliation(s)
- Martin Kellert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Imola Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
- Correspondence: ; Tel.: +49-341-97-36151
| |
Collapse
|
10
|
StC. Black D, Alamgir M, Jiang H, Bhadbhade M, Kumar N. Synthesis and Reactivity of Dimethoxy Activated Benzothiazoles. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Abstract
Oxidation of indoles is a fundamental organic transformation to deliver a variety of synthetically and pharmaceutically valuable nitrogen-containing compounds. Prior methods require the use of either organic oxidants (meta-chloroperoxybenzoic acid, N-bromosuccinimide, t-BuOCl) or stoichiometric toxic transition metals [Pb(OAc)4, OsO4, CrO3], which produced oxidant-derived by-products that are harmful to human health, pollute the environment and entail immediate purification. A general catalysis protocol using safer oxidants (H2O2, oxone, O2) is highly desirable. Herein, we report a unified, efficient halide catalysis for three oxidation reactions of indoles using oxone as the terminal oxidant, namely oxidative rearrangement of tetrahydro-β-carbolines, indole oxidation to 2-oxindoles, and Witkop oxidation. This halide catalysis protocol represents a general, green oxidation method and is expected to be used widely due to several advantageous aspects including waste prevention, less hazardous chemical synthesis, and sustainable halide catalysis. Indole oxidation represents a fundamental organic transformation delivering valuable nitrogen compounds. Here, the authors report a general halide catalysis protocol applied to three classes of oxidation reactions of indoles with oxone as a sustainable terminal oxidant.
Collapse
|
12
|
Abstract
Facile regioselective oxidation of indoles to 2-oxindoles promoted by sulfuric acid adsorbed on silica gel is reported. The demonstrated practical site-selective heterogeneous oxidation reactions conveniently take place with a broad substrate scope and functional group tolerances. The present oxidation strategy is also employed to accomplish the total synthesis of natural products donaxaridine and donaxarine. On the basis of analytical and spectral data it is evidenced that donaxarine stays in equilibrium with its hydrated ring opened form. The structural features essential for this type of oxidation and plausible mechanism are discussed in brief.
Collapse
Affiliation(s)
- Santosh V Shelar
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Narshinha P Argade
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| |
Collapse
|
13
|
Natu AD, Burde AS, Limaye RA, Paradkar MV. Acceleration of the Dakin Reaction by Trifluoroacetic Acid. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751914x14014814873316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Arun D. Natu
- Post graduate & research centre, MES Abasaheb Garware College, Karve Road, Pune-411004, India
| | | | - Rohan A. Limaye
- Post graduate & research centre, MES Abasaheb Garware College, Karve Road, Pune-411004, India
| | - Madhusudan V. Paradkar
- Post graduate & research centre, MES Abasaheb Garware College, Karve Road, Pune-411004, India
| |
Collapse
|
14
|
Jiang X, Zheng C, Lei L, Lin K, Yu C. Synthesis of 2-Oxindoles from Substituted Indoles by Hypervalent-Iodine Oxidation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701807] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Cong Zheng
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Lijun Lei
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Kai Lin
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
15
|
Lenin HH, Lauro FV, Marcela RN, Socorro HM, Maria LR, Francisco DC, Elodia GC, Eduardo PG, Josefa PE, Regina CC, Saidy EH. Design and synthesis of an indol derivative as antibacterial agent against Staphylococcus aureus. J Chem Biol 2017; 10:159-177. [PMID: 29075354 PMCID: PMC5639818 DOI: 10.1007/s12154-017-0173-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022] Open
Abstract
Several indole derivatives with antibacterial activity have been prepared using different protocols; however, some require special reagents and conditions. The aim of this study involved the synthesis of some indole derivatives using estrone and OTBS-estrone as chemical tools. The synthesis of the indole derivatives involves reactions such as follows: (1) synthesis of two indol derivatives (4 or 5) by reaction of estrone or OTBS-estrone with phenylhydrazine in medium acid; (2) reaction of 4 or 5 with 6-cloro-1-hexyne in medium basic to form two hexynyl-indol (7 or 8); (3) preparation of indol-propargylic alcohol derivatives (10 or 11) by reaction of benzaldehyde with 7 or 8 in medium basic; (4) synthesis of indol-aldehydes (12 or 13) via oxidation of 10 or 11 with DMSO; (5) synthesis of indeno-indol-carbaldehyde (15 or 16) via alkynylation/cyclization of 12 or 13 with hexyne in presence of copper(II); (6) preparation indeno-indol-carbaldehyde complex (19 or 20) via alkynylation/cyclization of 12 or 13 with 1-(hex-5-yn-1-yl)-2-phenyl-1H-imidazole. The antibacterial effect exerted by the indol-steroid derivatives against Streptococcus pneumoniae and Staphylococcus aureus bacteria was evaluated using dilution method and the minimum inhibitory concentration (MIC). The results showed that only the compound 19 inhibit the growth bacterial of S. aureus. In conclusion, these data indicate that antibacterial activity of 19 can be due mainly to functional groups involved in the chemical structure in comparison with the compounds studied.
Collapse
Affiliation(s)
- Hau-Heredia Lenin
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Figueroa-Valverde Lauro
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Rosas-Nexticapa Marcela
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontólogos s/n, 91010 Xalapa, Veracruz Mexico
| | - Herrera-Meza Socorro
- Instituto de Investigaciones Psicológicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col Industrial Animas, C.P. 91190 Xalapa, Veracruz Mexico
| | - López-Ramos Maria
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Díaz-Cedillo Francisco
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional Col. Santo Tomas, Prol. Carpio y Plan de Ayala s/n, D.F. C.P. 11340 México, Mexico
| | - García-Cervera Elodia
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Pool-Gómez Eduardo
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Paat-Estrella Josefa
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Cauich-Carrillo Regina
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| | - Euan-Hau Saidy
- Laboratory of Investigation, Faculty Chemical-Biological Sciences, University Autonomous of Campeche, Agustin Melgar s/n, C.P. 24039 Bellavista, Campeche Mexico
| |
Collapse
|
16
|
Reyes JR, Xu J, Kobayashi K, Bhat V, Rawal VH. Total Synthesis of (−)‐
N
‐Methylwelwitindolinone B Isothiocyanate. Angew Chem Int Ed Engl 2017; 56:9962-9966. [DOI: 10.1002/anie.201705322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Julius R. Reyes
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Jiasu Xu
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Kenichi Kobayashi
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Vikram Bhat
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Viresh H. Rawal
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
17
|
Reyes JR, Xu J, Kobayashi K, Bhat V, Rawal VH. Total Synthesis of (−)‐
N
‐Methylwelwitindolinone B Isothiocyanate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julius R. Reyes
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Jiasu Xu
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Kenichi Kobayashi
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Vikram Bhat
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Viresh H. Rawal
- Department of ChemistryUniversity of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
18
|
Eastabrook AS, Wang C, Davison EK, Sperry J. A procedure for transforming indoles into indolequinones. J Org Chem 2015; 80:1006-17. [PMID: 25525818 DOI: 10.1021/jo502509s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A procedure that converts a series of structurally diverse, readily available indole derivatives to their corresponding indolequinones is described. The three-step route commences with an iridium catalyzed C-H borylation to give a 7-borylindole that upon oxidation-hydrolysis affords the 7-hydroxyindole. Subsequent oxidation provides the indolequinone.
Collapse
Affiliation(s)
- Andrew S Eastabrook
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland, New Zealand
| | | | | | | |
Collapse
|
19
|
Arzumanyan AV, Terent'ev AO, Novikov RA, Lakhtin VG, Chernyshev VV, Fitch AN, Nikishin GI. Six Peroxide Groups in One Molecule - Synthesis of Nine-Membered Bicyclic Silyl Peroxides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Abe T, Itoh T, Choshi T, Hibino S, Ishikura M. One-pot synthesis of tryptanthrin by the Dakin oxidation of indole-3-carbaldehyde. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Yaremenko IA, Terent'ev AO, Vil' VA, Novikov RA, Chernyshev VV, Tafeenko VA, Levitsky DO, Fleury F, Nikishin GI. Approach for the Preparation of Various Classes of Peroxides Based on the Reaction of Triketones with H2O2: First Examples of Ozonide Rearrangements. Chemistry 2014; 20:10160-9. [DOI: 10.1002/chem.201402594] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 12/20/2022]
|
22
|
|
23
|
Chen S, Hossain MS, Foss FW. Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Org Lett 2012; 14:2806-9. [DOI: 10.1021/ol3010326] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuai Chen
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Mohammad S. Hossain
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Frank W. Foss
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| |
Collapse
|
24
|
Wang C, Sperry J. Iridium-Catalyzed C–H Borylation-Based Synthesis of Natural Indolequinones. J Org Chem 2012; 77:2584-7. [DOI: 10.1021/jo300330u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christy Wang
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| |
Collapse
|
25
|
Breazzano SP, Boger DL. Synthesis and stereochemical determination of complestatin A and B (neuroprotectin A and B). J Am Chem Soc 2011; 133:18495-502. [PMID: 21991993 DOI: 10.1021/ja208570q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently, we reported the first total synthesis of chloropeptin II (1, complestatin), the more strained and challenging of the two naturally occurring chloropeptins. Central to the design of the approach and by virtue of a single-step, acid-catalyzed ring expansion rearrangement of chloropeptin II to chloropeptin I, the route also provided a total synthesis of chloropeptin I. Herein, we report a complementary and divergent oxidation of chloropeptin II (1, complestatin) to either complestatin A (2, neuroprotectin A) or complestatin B (3, neuroprotectin B), providing the first synthesis of the natural products and establishing their remaining stereochemical assignments. Key to the approach to complestatin A (2, neuroprotectin A) was the development of two different single-step indole oxidations (HCl-DMSO and NBS, THF-H(2)O) that avoid the rearrangement of chloropeptin II (1) to chloropeptin I (4), providing the 2-oxindole 2 in superb yields (93% and 82%). With a mechanistic understanding of features that impact the latter oxidation and an appreciation of the intrinsic reactivity of the chloropeptin II indole, its modification (NCS, THF-H(2)O; Cs(2)CO(3), DMF-H(2)O) provided a two-step, single-pot oxidation of chloropeptin II (1) to afford directly the 3-hydroxy-2-oxindole complestatin B (3, neuroprotectin B). Extensive studies conducted on the fully functionalized synthetic DEF ring system of chloropeptin II were key to the unambiguous assignment of the stereochemistry as well as the exploration and subsequent development of the mild oxidation conditions used in the synthesis of complestatin A and B.
Collapse
Affiliation(s)
- Steven P Breazzano
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|