1
|
Jiang X, Song Y, Lv C, Li Y, Feng X, Zhang H, Chen Y, Wang Q. Mushroom-derived bioactive components with definite structures in alleviating the pathogenesis of Alzheimer's disease. Front Pharmacol 2024; 15:1373660. [PMID: 38835656 PMCID: PMC11148366 DOI: 10.3389/fphar.2024.1373660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Alzheimer's disease (AD) is a complicated neurodegenerative condition with two forms: familial and sporadic. The familial presentation is marked by autosomal dominance, typically occurring early in individuals under 65 years of age, while the sporadic presentation is late-onset, occurring in individuals over the age of 65. The majority of AD cases are characterized by late-onset and sporadic. Despite extensive research conducted over several decades, there is a scarcity of effective therapies and strategies. Considering the lack of a cure for AD, it is essential to explore alternative natural substances with higher efficacy and fewer side effects for AD treatment. Bioactive compounds derived from mushrooms have demonstrated significant potential in AD prevention and treatment by different mechanisms such as targeting amyloid formation, tau, cholinesterase dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, neurotrophic factors, ER stress, excitotoxicity, and mitochondrial dysfunction. These compounds have garnered considerable interest from the academic community owing to their advantages of multi-channel, multi-target, high safety and low toxicity. This review focuses on the various mechanisms involved in the development and progression of AD, presents the regulatory effects of bioactive components with definite structure from mushroom on AD in recent years, highlights the possible intervention pathways of mushroom bioactive components targeting different mechanisms, and discusses the clinical studies, limitations, and future perspectives of mushroom bioactive components in AD prevention and treatment.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Song
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
- Koch Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Changshun Lv
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yinghui Li
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
3
|
Abstract
Abstract
Fungi including mushrooms have been proved to be an important biosource of numerous metabolites having a huge variety of chemical structures and diverse bioactivities. Metabolites of mushrooms are of remarkable importance as new lead compounds for medicine and agrochemicals. This review presents some of our studies on biologically functional molecules purified from mushroom-forming fungi; (1) endoplasmic reticulum stress suppressor, (2) osteoclast-forming suppressing compounds, (3) plant growth regulators.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Antioxidant and antidiabetic activities of mycelial and fruit-body extracts from Mycoleptodonoides aitchisonii. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 2016; 35:355-68. [PMID: 24654802 DOI: 10.3109/07388551.2014.887649] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
Collapse
Affiliation(s)
- Chia-Wei Phan
- a Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | | | | | | | | |
Collapse
|
6
|
Choi JH, Suzuki T, Okumura H, Nagai K, Hirai H, Kawagishi H. Thapsigargin-induced ER stress suppressive compounds from the mushroom Mycoleptodonoides aitchisonii. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Raji Reddy C, Suman D, Narsimha Rao N. Alkyne-Mediated Approach to the Synthesis of (4R,5R)-5-Hydroxy-4-decanolide and (−)-Muricatacin. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Choi JH, Suzuki T, Okumura H, Noguchi K, Kondo M, Nagai K, Hirai H, Kawagishi H. Endoplasmic reticulum stress suppressive compounds from the edible mushroom Mycoleptodonoides aitchisonii. JOURNAL OF NATURAL PRODUCTS 2014; 77:1729-1733. [PMID: 24988471 DOI: 10.1021/np500075m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two novel compounds, 1 and 7, along with six known compounds (2-6 and 8), were isolated from the edible mushroom Mycoleptodonoides aitchisonii (bunaharitake in Japanese). The structures of the new compounds were determined by the interpretation of spectroscopic data. Compounds 1-4 and 6-8 showed protective activity against endoplasmic reticulum stress-dependent cell death.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Research Institute of Green Science and Technology, Shizuoka University , 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Metwaly AM, Kadry HA, El-Hela AA, Mohammad AEI, Ma G, Cutler SJ, Ross SA. Nigrosphaerin A a new isochromene derivative from the endophytic fungus Nigrospora sphaerica. PHYTOCHEMISTRY LETTERS 2014; 7:1-5. [PMID: 27708743 PMCID: PMC5047436 DOI: 10.1016/j.phytol.2013.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nigrosphaerin A, a new isochromene derivative (1), was isolated from the endophytic fungus Nigrospora sphaerica and chemically identified as 3-(3,4-dihydroxyphenyl)-4,6,8-trihydroxy-1H-isochromen-1-one-6-O-β-d-glucopyranoside. In addition nineteen known compounds (2-20) were isolated from the same fungus and chemically identified. Compounds (1-3, 5, and 7-16) were isolated for the first time from this fungus. In vitro antileukemic, antileishmanial, antifungal, antibacterial and antimalarial activities of (1-20) were examined. Compounds 5, 7, 9 and 10 showed good antileukemic activity against HL60 cells with IC50 values of 0.03, 0.39, 0.2 and 0.4 μg/mL, respectively and against K562 cells with IC50 values of 0.35, 0.35, 0.49 and 0.01 μg/mL, respectively. Compounds 3, 4 and 6 showed moderate antileishmanial activity with IC50 values of 30.2, 26.4 and 36.4 μg/ml, respectively. Compound 7 showed moderate antifungal activity against Cryptococcus neoformans with IC50 value of 14.8 μg/mL.
Collapse
Affiliation(s)
- Ahmed M. Metwaly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | - Hazem A. Kadry
- Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | - Atef A. El-Hela
- Department of Pharmacognosy, Faculty of Pharmacy, University of Al-Azhar, Cairo, Egypt
| | | | - Guoyi Ma
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Stephen J. Cutler
- Department of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Corresponding author at: National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA. Tel.: +1 662 915 1031; fax: +1 662 915 7989. (S.A. Ross)
| |
Collapse
|
10
|
Salvador JAR, Moreira VM, Pinto RMA, Leal AS, Paixão JA. Efficient oxidation of oleanolic acid derivatives using magnesium bis(monoperoxyphthalate) hexahydrate (MMPP): A convenient 2-step procedure towards 12-oxo-28-carboxylic acid derivatives. Beilstein J Org Chem 2012; 8:164-9. [PMID: 22423283 PMCID: PMC3302076 DOI: 10.3762/bjoc.8.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/04/2012] [Indexed: 01/11/2023] Open
Abstract
A new, straightforward and high yielding procedure to convert oleanolic acid derivatives into the corresponding δ-hydroxy-γ-lactones, by using the convenient oxidizing agent magnesium bis(monoperoxyphthalate) hexahydrate (MMPP) in refluxing acetonitrile, is reported. In addition, a two-step procedure for the preparation of oleanolic 12-oxo-28-carboxylic acid derivatives directly from Δ(12)-oleananes, without the need for an intermediary work-up, and keeping the same reaction solvent in both steps, is described as applied to the synthesis of 3,12-dioxoolean-28-oic acid.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Grupo de Química Farmacêutica, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
11
|
Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
A study of mycelial growth and exopolysaccharide production from a submerged culture of Mycoleptodonoides aitchisonii in an air-lift bioreactor. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Choi JH, Maeda K, Nagai K, Harada E, Kawade M, Hirai H, Kawagishi H. Termitomycamides A to E, fatty acid amides isolated from the mushroom Termitomyces titanicus, suppress endoplasmic reticulum stress. Org Lett 2011; 12:5012-5. [PMID: 20936815 DOI: 10.1021/ol102186p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five fatty acid amides, termitomycamides A to E (1 to 5), were isolated from the giant edible mushroom Termitomyces titanicus. The structures of 1-5 were determined by the interpretation of spectral data and/or synthesis. Compounds 2 and 5 showed protective activity against endoplasmic reticulum stress-dependent cell death.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Ko YO, Chun YS, Kim Y, Kim SJ, Shin H, Lee SG. Tandem one-pot synthesis of α-(aminomethylene)-γ-butyrolactones via regioselective epoxide ring-opening with the Blaise reaction intermediate. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.10.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Mehl F, Bombarda I, Vanthuyne N, Faure R, Gaydou E. Hemisynthesis and odour properties of δ-hydroxy-γ-lactones and precursors derived from linalool. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|