1
|
El‐Dash YS, Mahmoud AM, El‐Mosallamy SS, El‐Nassan HB. Electrochemical Synthesis of 5‐Benzylidenebarbiturate Derivatives and Their Application as Colorimetric Cyanide Probe. ChemElectroChem 2022. [DOI: 10.1002/celc.202200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yara S. El‐Dash
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Amr M. Mahmoud
- Analytical Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Sally S. El‐Mosallamy
- Analytical Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Hala B. El‐Nassan
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| |
Collapse
|
2
|
Osman EO, Mahmoud AM, El-Mosallamy SS, El-Nassan HB. Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Muhammed MT, Kuyucuklu G, Kaynak-Onurdag F, Aki-Yalcin E. Synthesis, Antimicrobial Activity, and Molecular Modeling Studies of
Some Benzoxazole Derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220408133643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The need to develop novel antimicrobial agents is apparent as infectious diseases
are increasing and resistance is rapidly developing against the drugs used in the treatment.
Objective:
This study aimed at the synthesis, antimicrobial susceptibility testing, and computational elucidation
of the mechanism of action of benzoxazole derivatives. It also aimed to compare the results obtained
in this study with the previous studies by our group. This would pave the way for designing novel
molecules with better antimicrobial activity. The other goal was pharmacophore analysis and in silico
ADMET analysis of them.
Methods:
In this study, synthesis, antimicrobial susceptibility testing, molecular docking, pharmacophore
analysis, and ADMET prediction were carried out.
Results:
The antimicrobial activity studies demonstrated that the synthesized compounds were active
against standard strains and clinical isolates at high concentrations. Then, the antimicrobial testing results
were compared to similar benzoxazoles tested by our group previously. Benzoxazole derivatives without
a methylene bridge between oxazole and phenyl ring were found to be more active than those with the
methylene bridge. This was also confirmed by molecular modeling undertaken in this study. The computational
results indicated that the antibacterial activity could be achieved by DNA gyrase inhibition.
Pharmacophore analysis showed that hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and
hydrophobicity features would contribute to the inhibition. In addition, in silico ADMET property investigation
of the compounds exhibited that they had the desired pharmacokinetics.
Conclusion:
Although antibacterial activity by inhibiting DNA gyrase is selective, the synthesized compounds
were active at much higher concentrations than the standards. Therefore, in prospective antimicrobial
studies, it is better to focus on benzoxazole derivatives without the methylene bridge. Since the
compounds had suitable in silico ADMET properties, screening them against the other pharmacologic
activities should be carried out. It is recommended to support the molecular modeling results with in vitro
or in vivo studies.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fatma Kaynak-Onurdag
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Esin Aki-Yalcin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Biological Activity and ADME/Tox Prediction of Some 2-Substituted Benzoxazole Derivatives. Bioorg Chem 2022; 123:105756. [DOI: 10.1016/j.bioorg.2022.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
|
5
|
Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J Org Chem 2021; 86:10455-10466. [PMID: 34275281 DOI: 10.1021/acs.joc.1c01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter Σ(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Daniel J Pyle
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.,Department of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Krzysztof Ejsmont
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Erol M, Celik I, Kuyucuklu G. Synthesis, Molecular Docking, Molecular Dynamics, DFT and Antimicrobial Activity Studies of 5-substituted-2-(p-methylphenyl)benzoxazole Derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
8
|
Petrucci R, Feroci M, Mattiello L, Chiarotto I. Xanthine Scaffold: Available Synthesis Routes to Deliver Diversity by Derivatization. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507103141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functionalization of the skeletal systems of heterocycles represents a significant goal
for the development of new compounds. The heterocyclic molecule xanthine (3,7-dihydro-1Hpurine-
2,6-dione) is a purine base with a bicyclic ring skeleton and four different nitrogen atoms,
three of them are -NH groups. The principal derivatives are the well known natural methylxanthines
(e.g., caffeine, theophylline and theobromine) that have prominent physiological effects at a very low
dose. The natural methylated xanthines, theophylline, theobromine and caffeine, are present in different
plants such as the tea, cocoa and coffee species. For this reason natural xanthines can be considered
as bio-based and renewable starting materials; their use in organic synthesis is strongly recommended
in order to carry out sustainable chemistry. Essentially, the xanthine scaffold led to the
preparation of numerous compounds very attractive in the pharmaceutical field, and these drugs are
commercialized for a wide range of biological activities. The scope of this mini-review is to consider
the use of natural xanthines as starting material in chemical transformations carried out in organic
solvents, without the intent to be exhaustive of all the synthetically chemical applications. More information
on the chemical and electrochemical reactivity of this structural core in an organic solvent
can be useful for the scientific community. The effectiveness of natural xanthines can be improved
by modifying the structures of these already biologically active compounds.
Collapse
Affiliation(s)
- Rita Petrucci
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Marta Feroci
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Leonardo Mattiello
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Isabella Chiarotto
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| |
Collapse
|
9
|
Vetica F, Bortolami M, Petrucci R, Rocco D, Feroci M. Electrogenerated NHCs in Organic Synthesis: Ionic Liquids vs Organic Solvents Effects. CHEM REC 2021; 21:2130-2147. [PMID: 33507627 DOI: 10.1002/tcr.202000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
In the last twenty years, N-heterocyclic carbenes (NHCs) have been extensively studied for their application as organocatalysts in stereoselective synthesis as well as ligands for transition metals-promoted synthetic methodologies. Derived mainly from azolium salts, NHCs have demonstrated exceptional versatility in their generation usually performed by deprotonation or reduction (chemical or electrochemical). In particular, the generation of NHC under electrochemical conditions, starting from azolium-based ionic liquids, has proven to be a successful green approach and demonstrated wide applicability in organic synthesis. In this Personal Account, the application of electrogenerated NHCs in organic synthesis will be discussed, with a particular attention to the different reactivity in ionic liquids compared to classical organic solvents.
Collapse
Affiliation(s)
- Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| |
Collapse
|
10
|
WO3 and Ionic Liquids: A Synergic Pair for Pollutant Gas Sensing and Desulfurization. METALS 2020. [DOI: 10.3390/met10040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review deals with the notable results obtained by the synergy between ionic liquids (ILs) and WO3 in the field of pollutant gas sensing and sulfur removal pretreatment of fuels. Starting from the known characteristics of tungsten trioxide as catalytic material, many authors have proposed the use of ionic liquids in order to both direct WO3 production towards controllable nanostructures (nanorods, nanospheres, etc.) and to modify the metal oxide structure (incorporating ILs) in order to increase the gas adsorption ability and, thus, the catalytic efficiency. Moreover, ionic liquids are able to highly disperse WO3 in composites, thus enhancing the contact surface and the catalytic ability of WO3 in both hydrodesulfurization (HDS) and oxidative desulfurization (ODS) of liquid fuels. In particular, the use of ILs in composite synthesis can direct the hydrogenation process (HDS) towards sulfur compounds rather than towards olefins, thus preserving the octane number of the fuel while highly reducing the sulfur content and, thus, the possibility of air pollution with sulfur oxides. A similar performance enhancement was obtained in ODS, where the high dispersion of WO3 (due to the use of ILs during the synthesis) allows for noteworthy results at very low temperatures (50 °C).
Collapse
|
11
|
Bilginer S, Gul HI, Erdal FS, Sakagami H, Levent S, Gulcin I, Supuran CT. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2( 3H)-benzoxazolones. J Enzyme Inhib Med Chem 2019; 34:1722-1729. [PMID: 31576761 PMCID: PMC6781194 DOI: 10.1080/14756366.2019.1670657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, new chalcone compounds having the chemical structure of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones (1-8) were synthesised and were characterised by 1H-NMR, 13 C-NMR, and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity results pointed out that compound 4, 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-3H-benzoxazol-2-one, showed the highest cytotoxicity (CC50) and potency-selectivity expression (PSE) value, and thus can be considered as a lead compound of this study. According to the CA inhibitory results, IC50 values of the compounds 1-8 towards hCA I were in the range of 29.74-69.57 µM, while they were in the range of 18.14 - 48.46 µM towards hCA II isoenzyme. Ki values of the compounds 1-8 towards hCA I were in the range of 28.37 ± 6.63-70.58 ± 6.67 µM towards hCA I isoenzyme and they were in the range of 10.85 ± 2.14 - 37.96 ± 2.36 µM towards hCA II isoenzyme.
Collapse
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Feyza Sena Erdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hiroshi Sakagami
- School of Dentistry, Meikai University Research Institute of Odontology (M-RIO), Meikai University, Sakado, Japan
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
12
|
Sayyar R, Makarem S, Mirza B. Organic Electrosynthesis as a New Facile and Green Method for One‐pot Synthesis of Nanosized Particles of Octahydro‐imidazo[1,2‐
a
]quinolin‐6‐one Derivatives
via
a Multicomponent Reaction. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rana Sayyar
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| | - Somayeh Makarem
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| |
Collapse
|
13
|
Zilifdar F, Foto E, Ertan-Bolelli T, Aki-Yalcin E, Yalcin I, Diril N. Biological evaluation and pharmacophore modeling of some benzoxazoles and their possible metabolites. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Zilifdar
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Egemen Foto
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Tugba Ertan-Bolelli
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Esin Aki-Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Ismail Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Nuran Diril
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| |
Collapse
|
14
|
Das R, Banerjee M, Rai RK, Karri R, Roy G. Metal-free C(sp2)–H functionalization of azoles: K2CO3/I2-mediated oxidation, imination, and amination. Org Biomol Chem 2018; 16:4243-4260. [DOI: 10.1039/c8ob00535d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report metal-free one-pot C2−H oxidation, imination, and amination of several azoles from azolium salts by using a commercially available simple and efficient reagent combination K2CO3/I2.
Collapse
Affiliation(s)
- Ranajit Das
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Mainak Banerjee
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Rakesh Kumar Rai
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Ramesh Karri
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| | - Gouriprasanna Roy
- Department of Chemistry
- Shiv Nadar University
- Gautam Buddha Nagar
- India
| |
Collapse
|
15
|
Chiarotto I, Feroci M, Forte G, Inesi A. Stability of electrogenerated 1-butyl-3-methylimidazol-2-ylidene in DMF. Part 2. Role of acid substrates. [1]. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kathiresan M, Velayutham D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem Commun (Camb) 2015; 51:17499-516. [DOI: 10.1039/c5cc06961k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed.
Collapse
Affiliation(s)
- Murugavel Kathiresan
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| | - David Velayutham
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| |
Collapse
|
17
|
Feroci M, Chiarotto I, Inesi A. Internal redox amidation of α,β-unsaturated aldehydes in ionic liquids. The electrochemical route. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Braun S, Botzki A, Salmen S, Textor C, Bernhardt G, Dove S, Buschauer A. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase. Eur J Med Chem 2011; 46:4419-29. [DOI: 10.1016/j.ejmech.2011.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/29/2011] [Accepted: 07/08/2011] [Indexed: 11/17/2022]
|
19
|
Feroci M. Investigation of the Role of Electrogenerated N-Heterocyclic Carbene in the Staudinger Synthesis in Ionic Liquid. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijoc.2011.14028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Chiarotto I, Feroci M, Orsini M, Feeney MMM, Inesi A. Study on the Reactivity of Aldehydes in Electrolyzed Ionic Liquids: Benzoin Condensation - Volatile Organic Compounds (VOCs) vs. Room Temperature Ionic Liquids (RTILs). Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000555] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
CsF–Celite catalyzed facile N-alkylation of 2(3H)-benzoxazolones and antimicrobial properties of 2-substituted benzoxazole and 3-substituted-2(3H)-benzoxazolone derivatives. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9367-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Murty MSR, Ram KR, Rao RV, Yadav JS, Rao JV, Cheriyan VT, Anto RJ. Synthesis and preliminary evaluation of 2-substituted-1,3-benzoxazole and 3-[(3-substituted)propyl]-1,3-benzoxazol-2(3H)-one derivatives as potent anticancer agents. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9353-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Polarity reversal induced by electrochemically generated thiazol-2-ylidenes: The Stetter reaction. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.01.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Feroci M, Chiarotto I, Orsini M, Inesi A. Electrogenerated NHC as an organocatalyst in the Staudinger reaction. Chem Commun (Camb) 2010; 46:4121-3. [DOI: 10.1039/c002325f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|