1
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
2
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
4
|
Fouad MA, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv 2020; 10:42644-42681. [PMID: 35514898 PMCID: PMC9058431 DOI: 10.1039/d0ra07501a] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Multicomponent reactions (MCRs) are powerful synthetic tools in which more than two starting materials couple with each other to form multi-functionalized compounds in a one-pot process, the so-called "tandem", "domino" or "cascade" reaction, or utilizing an additional step without changing the solvent, the so-called a sequential-addition procedure, to limit the number of synthetic steps, while increasing the complexity and the molecular diversity, which are highly step-economical reactions. The Ugi reaction, one of the most common multicomponent reactions, has recently fascinated chemists with the high diversity brought by its four- or three-component-based isonitrile. The Ugi reaction has been introduced in organic synthesis as a novel, efficient and useful tool for the preparation of libraries of multifunctional peptides, natural products, and heterocyclic compounds with stereochemistry control. In this review, we highlight the recent advances of the Ugi reaction in the last two decades from 2000-2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions. Meanwhile, the applications of these compounds in pharmaceutical trials are also discussed.
Collapse
Affiliation(s)
- Manar Ahmed Fouad
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
5
|
Moreira R, Noden M, Taylor SD. Synthesis of Azido Acids and Their Application in the Preparation of Complex Peptides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAzido acids are important synthons for the synthesis of complex peptides. As a protecting group, the azide moiety is atom-efficient, easy to install and can be reduced in the presence of many other protecting groups, making it ideal for the synthesis of branched and/or cyclic peptides. α-Azido acids are less bulky than urethane-protected counterparts and react more effectively in coupling reactions of difficult-to-form peptide and ester bonds. Azido acids can also be used to form azoles on complex intermediates. This review covers the synthesis of azido acids and their application to the total synthesis of complex peptide natural products.1 Introduction2 Synthesis of α-Azido Acids2.1 From α-Amino Acids or Esters2.2 Via α-Substitution2.3 Via Electrophilic Azidation2.4 Via Condensation of N-2-Azidoacetyl-4-Phenylthiazolidin- 2-Thi one Enolates with Aldehydes and Acetals2.5 Synthesis of α,β-Unsaturated α-Azido Acids and Esters3 Synthesis of β-Azido Acids3.1 Preparation of Azidoalanine and 3-Azido-2-aminobutanoic Acids3.2 General Approaches to Preparing β-Azido Acids Other Than Azi doalanine and AABA4 Azido Acids in Total Synthesis4.1 α-Azido Acids4.2 β-Azido Acids and Azido Acids Containing an Azide on the Side
Chain5 Conclusions
Collapse
|
6
|
Convenient two-step synthesis of highly functionalized benzo-fused 1,4-diazepin-3-ones and 1,5-diazocin-4-ones by sequential Ugi and intramolecular S N Ar reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Banfi L, Basso A, Lambruschini C, Moni L, Riva R. Synthesis of seven-membered nitrogen heterocycles through the Ugi multicomponent reaction. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2065-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
New efficient synthesis of multisubstituted benzimidazoles and quinoxalin-2(1 H )-ones by a Ugi 4CC/aza-Wittig sequence starting from aromatic amine precursors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Bode ML, Gravestock D, Rousseau AL. Synthesis, Reactions and Uses of Isocyanides in Organic Synthesis. An Update. ORG PREP PROCED INT 2016. [DOI: 10.1080/00304948.2016.1138072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Maddirala AR, Andreana PR. Synthesis of 3-Substituted 2-Indolinones by a Multicomponent Coupling Isocyanide-Dependent Microwave-Assisted Intramolecular Transamidation Process. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Welsch SJ, Umkehrer M, Kalinski C, Ross G, Burdack C, Kolb J, Wild M, Ehrlich A, Wessjohann LA. Synthesis of substituted imidazolines by an Ugi/Staudinger/aza-Wittig sequence. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Azuaje J, Pérez-Rubio JM, Yaziji V, El Maatougui A, González-Gomez JC, Sánchez-Pedregal VM, Navarro-Vázquez A, Masaguer CF, Teijeira M, Sotelo E. Integrated Ugi-Based Assembly of Functionally, Skeletally, and Stereochemically Diverse 1,4-Benzodiazepin-2-ones. J Org Chem 2015; 80:1533-49. [DOI: 10.1021/jo502382q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | | | | | - Armando Navarro-Vázquez
- Departamento
de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Vigo, E-36310 Vigo, Spain
| | | | - Marta Teijeira
- Departamento
de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Vigo, E-36310 Vigo, Spain
| | | |
Collapse
|
13
|
La-Venia A, Ventosa-Andrés P, Hradilová L, Krchňák V. From Amino Acids to Nature-Inspired Molecular Scaffolds: Incorporation of Medium-Sized Bridged Heterocycles into a Peptide Backbone. J Org Chem 2014; 79:10378-89. [DOI: 10.1021/jo501983j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Agustina La-Venia
- Department
of Organic Chemistry, Faculty of Science, Institute of Molecular and
Translational Medicine, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pilar Ventosa-Andrés
- Department
of Organic Chemistry, Faculty of Science, Institute of Molecular and
Translational Medicine, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ludmila Hradilová
- Farmak, Na vlčinci
16/3, Klášterní Hradisko, 779 00 Olomouc, Czech Republic
| | - Viktor Krchňák
- Department
of Organic Chemistry, Faculty of Science, Institute of Molecular and
Translational Medicine, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland
Science Center, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Synthesis of 3-oxo-1,4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Regioselective Synthesis of 2-Acylquinazolines and 3H-1,4-Benzodiazepin-3-ones by a Ugi 4CC/Staudinger/aza-Wittig Sequence. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kaur N, Kishore D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.772202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Navjeet Kaur
- a Department of Chemistry , Banasthali University , Banasthali , Rajasthan , India
| | - Dharma Kishore
- a Department of Chemistry , Banasthali University , Banasthali , Rajasthan , India
| |
Collapse
|
17
|
Koopmanschap G, Ruijter E, Orru RVA. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 2014; 10:544-98. [PMID: 24605172 PMCID: PMC3943360 DOI: 10.3762/bjoc.10.50] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022] Open
Abstract
In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection-cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles (>12 membered rings). This review describes the developments since 2002 of IMCRs-cyclization strategies towards a wide variety of small cyclic mimics, medium sized cyclic constructs and macrocyclic peptidomimetics.
Collapse
Affiliation(s)
- Gijs Koopmanschap
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Romano VA Orru
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wang Y, Chen M, Ding MW. A simple and one-pot synthesis of 2,3,4,5-tetrasubstituted 4,5-dihydro-3H-1,4-benzodiazepines. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zeng XH, Wang HM, Wu L, Ding MW. One-pot synthesis of 5-oxopyrrolidine-2-carboxamides via a tandem Ugi 4CC/SN cyclization starting from Baylis–Hillman bromides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Loos P, Ronco C, Riedrich M, Arndt HD. Unified Azoline and Azole Syntheses by Optimized Aza-Wittig Chemistry. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev 2013; 113:2958-3043. [DOI: 10.1021/cr300176g] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran,
Iran
| | - Ali Akbari
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| |
Collapse
|
22
|
Huang Y, Khoury K, Chanas T, Dömling A. Multicomponent synthesis of diverse 1,4-benzodiazepine scaffolds. Org Lett 2012; 14:5916-9. [PMID: 23157402 PMCID: PMC3732779 DOI: 10.1021/ol302837h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The 1,4-benzodiazepine (BDZ) scaffold is of particular interest in drug design due to a balanced ensemble of beneficial physicochemical properties including a semirigid and compact diazepine ring with spatial placements of several substituents, combined with low number of rotatable bonds, hydrogen bond donors and acceptors, and intermediate lipophilicity. As an alternative to traditional multistep sequential syntheses, we designed routes employing one-pot MCRs to accelerate access diverse BDZ scaffolds in two or three steps.
Collapse
Affiliation(s)
- Yijun Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kareem Khoury
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tyler Chanas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alexander Dömling
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
23
|
Gunawan S, Ayaz M, De Moliner F, Frett B, Kaiser C, Patrick N, Xu Z, Hulme C. Synthesis of Tetrazolo-Fused Benzodiazepines and Benzodiazepinones by a Two-Step Protocol Using an Ugi-Azide Reaction for Initial Diversity Generation. Tetrahedron 2012; 68:5606-5611. [PMID: 22923851 PMCID: PMC3423981 DOI: 10.1016/j.tet.2012.04.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A two-step strategy for the synthesis of arrays of tricyclic tetrazolo-fused benzodiazepines and benzodiazepinones has been investigated. The protocol uses ortho-N-Boc phenylisocyanides and phenylglyoxaldehydes or ethyl glyoxylate in the 4-component Ugi-Azide reaction to afford MCR (Multi Component Reactions) derived adducts equipped with the desired diversity inputs. A subsequent acidic treatment (TFA/DCE) allows a simultaneous deprotection-cyclization leading to the final products.
Collapse
Affiliation(s)
- Steven Gunawan
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Muhammad Ayaz
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Fabio De Moliner
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Brendan Frett
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Christine Kaiser
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Nina Patrick
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Zhigang Xu
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, College of Pharmacy, BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737 USA
| |
Collapse
|
24
|
Ramazani A, Ashtari M, Souldozi A, Ahmadi Y. N-Isocyaniminotriphenylphosphorane as an Efficient Reagent for the Synthesis of Disubstituted 1,3,4-Oxadiazoles Via In-Situ Generation of Sterically Congested Iminophosphorane Derivatives. PHOSPHORUS SULFUR 2012. [DOI: 10.1080/10426507.2012.668983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ali Ramazani
- a Department of Chemistry , Zanjan University , Zanjan , Iran
| | - Mona Ashtari
- b Department of Chemistry , Payame Noor University , Tehran , Iran
| | - Ali Souldozi
- c Department of Chemistry, Urmia Branch , Islamic Azad University , Urmia , Iran
| | - Yavar Ahmadi
- d Young Researchers Club, Zanjan Branch , Islamic Azad University , Zanjan , Iran
| |
Collapse
|
25
|
Sañudo M, García-Valverde M, Marcaccini S, Torroba T. A diastereoselective synthesis of pseudopeptidic hydantoins by an Ugi/cyclization/Ugi sequence. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Eckert H. Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRs) of the last decade. Molecules 2012; 17:1074-102. [PMID: 22267194 PMCID: PMC6268852 DOI: 10.3390/molecules17011074] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 11/16/2022] Open
Abstract
A collection of smart multicomponent reactions (MCRs) with continuative post condensation cyclizations (PCCs) is presented to construct conventional three- to seven-membered heterocyclic compounds in diversity oriented syntheses (DOS). These will provide a high degree of applying economical and ecological advantages as well as of practicability. Water, ionic liquids, and solvent-less syntheses as well as use of various forms of energy as microwave and ultrasonic irradiation are examined and discussed.
Collapse
Affiliation(s)
- Heiner Eckert
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| |
Collapse
|
27
|
Mossetti R, Saggiorato D, Tron GC. Exploiting the acylating nature of the imide-Ugi intermediate: a straightforward synthesis of tetrahydro-1,4-benzodiazepin-2-ones. J Org Chem 2011; 76:10258-62. [PMID: 22070376 DOI: 10.1021/jo2015054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a simple and novel protocol for the synthesis of tetrahydro-1,4-benzodiazepin-2-ones with three points of diversity, exploiting the acylating properties of the recently rediscovered Ugi-imide. The final compounds can be easily prepared in three synthetic steps using a multicomponent reaction, a Staudinger reduction, and an acylative protocol, with good to excellent yields for each synthetic step.
Collapse
Affiliation(s)
- Riccardo Mossetti
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Università degli Studi del Piemonte Orientale A. Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | |
Collapse
|
28
|
Xie H, Yu JB, Ding MW. Temperature-Dependent Regioselective Synthesis of 1,2,4-Triazino[2,3-b]indazoles and 3H-1,4-Benzodiazepines by Domino-Staudinger/Aza-Wittig/Isomerization Reaction. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Baranac-Stojanović M, Marković R, Stojanović M. Catalytic oxidations of enolizable ketones using 2-alkylidene-4-oxothiazolidine vinyl bromide. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
New efficient synthesis of 2,3,4-trisubstituted 3,4-dihydroquinazolines by a Ugi 4CC/Staudinger/aza-Wittig sequence. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
He P, Nie YB, Wu J, Ding MW. Unexpected synthesis of indolo[1,2-c]quinazolines by a sequential Ugi 4CC-Staudinger-aza-Wittig-nucleophilic addition reaction. Org Biomol Chem 2011; 9:1429-36. [PMID: 21221453 DOI: 10.1039/c0ob00855a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sequential Ugi-Staudinger-aza-Wittig-nucleophilic addition reaction was developed to construct indolo[1,2-c]quinazoline derivatives, starting from the easily accessible 2-azidobenzaldehyde, carboxylic acid, 2-acylaniline and isocyanide. It is noteworthy that this is the first report of the cyclization of the Ugi adduct to give a dihydroindole ring system with two quaternary carbon centers, via the nucleophilic addition reaction of the methine group to the carbonyl group.
Collapse
Affiliation(s)
- Ping He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, 430079, PR China
| | | | | | | |
Collapse
|