1
|
Hoyos P, Perona A, Bavaro T, Berini F, Marinelli F, Terreni M, Hernáiz MJ. Biocatalyzed Synthesis of Glycostructures with Anti-infective Activity. Acc Chem Res 2022; 55:2409-2424. [PMID: 35942874 PMCID: PMC9454102 DOI: 10.1021/acs.accounts.2c00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecules containing carbohydrate moieties play essential roles in fighting a variety of bacterial and viral infections. Consequently, the design of new carbohydrate-containing drugs or vaccines has attracted great attention in recent years as means to target several infectious diseases.Conventional methods to produce these compounds face numerous challenges because their current production technology is based on chemical synthesis, which often requires several steps and uses environmentally unfriendly reactants, contaminant solvents, and inefficient protocols. The search for sustainable processes such as the use of biocatalysts and eco-friendly solvents is of vital importance. Therefore, their use in a variety of reactions leading to the production of pharmaceuticals has increased exponentially in the last years, fueled by recent advances in protein engineering, enzyme directed evolution, combinatorial biosynthesis, immobilization techniques, and flow biocatalysis. In glycochemistry and glycobiology, enzymes belonging to the families of glycosidases, glycosyltransferases (Gtfs), lipases, and, in the case of nucleoside and nucleotide analogues, also nucleoside phosphorylases (NPs) are the preferred choices as catalysts.In this Account, on the basis of our expertise, we will discuss the recent biocatalytic and sustainable approaches that have been employed to synthesize carbohydrate-based drugs, ranging from antiviral nucleosides and nucleotides to antibiotics with antibacterial activity and glycoconjugates such as neoglycoproteins (glycovaccines, GCVs) and glycodendrimers that are considered as very promising tools against viral and bacterial infections.In the first section, we will report the use of NPs and N-deoxyribosyltransferases for the development of transglycosylation processes aimed at the synthesis of nucleoside analogues with antiviral activity. The use of deoxyribonucleoside kinases and hydrolases for the modification of the sugar moiety of nucleosides has been widely investigated.Next, we will describe the results obtained using enzymes for the chemoenzymatic synthesis of glycoconjugates such as GCVs and glycodendrimers with antibacterial and antiviral activity. In this context, the search for efficient enzymatic syntheses represents an excellent strategy to produce structure-defined antigenic or immunogenic oligosaccharide analogues with high purity. Lipases, glycosidases, and Gtfs have been used for their preparation.Interestingly, many authors have proposed the use Gtfs originating from the biosynthesis of natural glycosylated antibiotics such as glycopeptides, macrolides, and aminoglycosides. These have been used in the chemoenzymatic semisynthesis of novel antibiotic derivatives by modification of the sugar moiety linked to their complex scaffold. These contributions will be described in the last section of this review because of their relevance in the fight against the spreading phenomenon of antibiotic resistance. In this context, the pioneering in vivo synthesis of novel derivatives obtained by genetic manipulation of producer strains (combinatorial biosynthesis) will be shortly described as well.All of these strategies provide a useful and environmentally friendly synthetic toolbox. Likewise, the field represents an illustrative example of how biocatalysis can contribute to the sustainable development of complex glycan-based therapies and how problems derived from the integration of natural tools in synthetic pathways can be efficiently tackled to afford high yields and selectivity. The use of enzymatic synthesis is becoming a reality in the pharmaceutical industry and in drug discovery to rapidly afford collections of new antibacterial or antiviral molecules with improved specificity and better metabolic stability.
Collapse
Affiliation(s)
- Pilar Hoyos
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Almudena Perona
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Teodora Bavaro
- Dipartimento
di Scienze del Farmaco, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Francesca Berini
- Dipartimento
di Biotecnologie e Scienze della Vita, Università
degli Studi dell’Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Flavia Marinelli
- Dipartimento
di Biotecnologie e Scienze della Vita, Università
degli Studi dell’Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Dipartimento
di Scienze del Farmaco, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - María J. Hernáiz
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain,
| |
Collapse
|
2
|
Piedrabuena D, Rumbero Á, Pires E, Leal-Duaso A, Civera C, Fernández-Lobato M, Hernaiz MJ. Enzymatic synthesis of novel fructosylated compounds by Ffase from Schwanniomyces occidentalis in green solvents. RSC Adv 2021; 11:24312-24319. [PMID: 35479057 PMCID: PMC9036678 DOI: 10.1039/d1ra01391b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
The β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces potential prebiotic fructooligosaccharides (FOS) by self-transfructosylation of sucrose, being one of the highest known producers of 6-kestose. The use of Green Solvents (GS) in biocatalysis has emerged as a sustainable alternative to conventional organic media for improving product yields and generating new molecules. In this work, the Ffase hydrolytic and transfructosylating activity was analysed using different GS, including biosolvents and ionic liquids. Among them, 11 were compatible for the net synthesis of FOS. Besides, two glycerol derivatives improved the yield of total FOS. Interestingly, polyols ethylene glycol and glycerol were found to be efficient alternative fructosyl-acceptors, both substantially decreasing the sucrose fructosylation. The main transfer product of the reaction with glycerol was a 62 g L-1 isomeric mixture of 1-O and 2-O-β-d-fructofuranosylglycerol, representing 95% of all chemicals generated by transfructosylation. Unexpectedly, the non-terminal 2-O fructo-conjugate was the major molecule catalysed during the process, while the 1-O isomer was the minor one. This fact made Ffase the first known enzyme from yeast showing this catalytic ability. Thus, novel fructosylated compounds with potential applications in food, cosmetics, and pharmaceutical fields have been obtained in this work, increasing the biotechnological interest of Ffase with innocuous GS.
Collapse
Affiliation(s)
- David Piedrabuena
- Centro de Biología Molecular Severo Ochoa (CBMSO; UAM-CSIC), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| | - Ángel Rumbero
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid Plaza Ramón y Cajal s/n 28040 Madrid Spain
| | - Elísabet Pires
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Alejandro Leal-Duaso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Concepción Civera
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa (CBMSO; UAM-CSIC), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - María J Hernaiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain
| |
Collapse
|
3
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Synthesis of a Fucosylated Trisaccharide Via Transglycosylation by α-L-Fucosidase from Thermotoga maritima. Appl Biochem Biotechnol 2018; 186:681-691. [PMID: 29717409 DOI: 10.1007/s12010-018-2771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).
Collapse
Affiliation(s)
- Francisco Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.,Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. Hidalgo Poniente 46, Col. La Estación, 52006, Lerma de Villada, Mexico State, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.
| |
Collapse
|
4
|
Lundemo P, Karlsson EN, Adlercreutz P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl Microbiol Biotechnol 2016; 101:1121-1131. [PMID: 27678115 PMCID: PMC5247548 DOI: 10.1007/s00253-016-7833-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
Abstract
Unveiling the determinants for transferase and hydrolase activity in glycoside hydrolases would allow using their vast diversity for creating novel transglycosylases, thereby unlocking an extensive toolbox for carbohydrate chemists. Three different amino acid substitutions at position 220 of a GH1 β-glucosidase from Thermotoga neapolitana caused an increase of the ratio of transglycosylation to hydrolysis (rs/rh) from 0.33 to 1.45–2.71. Further increase in rs/rh was achieved by modulation of pH of the reaction medium. The wild-type enzyme had a pH optimum for both hydrolysis and transglycosylation around 6 and reduced activity at higher pH. Interestingly, the mutants had constant transglycosylation activity over a broad pH range (5–10), while the hydrolytic activity was largely eliminated at pH 10. The results demonstrate that a combination of protein engineering and medium engineering can be used to eliminate the hydrolytic activity without affecting the transglycosylation activity of a glycoside hydrolase. The underlying factors for this success are pursued, and perturbations of the catalytic acid/base in combination with flexibility are shown to be important factors.
Collapse
Affiliation(s)
- Pontus Lundemo
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Eva Nordberg Karlsson
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Patrick Adlercreutz
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
5
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
6
|
Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by β-Galactosidase from Escherichia coli. Int J Mol Sci 2015; 16:13714-28. [PMID: 26084049 PMCID: PMC4490519 DOI: 10.3390/ijms160613714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023] Open
Abstract
The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-d-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl l-serine benzyl ester (23.2%) was achieved in heptane:buffer medium (70:30), whereas with the lactose, the highest bioconversion yield (3.94%) was obtained in the buffer reaction system. The structures of most abundant galactosylated serine products were characterized by MS/MS. The molecular docking simulation revealed that the binding of serine/threonine derivatives to the enzyme’s active site was stronger (−4.6~−7.9 kcal/mol) than that of the natural acceptor, glucose, and mainly occurred through interactions with aromatic residues. For N-tert-butoxycarbonyl serine methyl ester (6.8%) and N-carboxybenzyl serine benzyl ester (3.4%), their binding affinities and the distances between their hydroxyl side chain and the 1′-OH group of galactose moiety were in good accordance with the quantified bioconversion yields. Despite its lower predicted bioconversion yield, the high experimental bioconversion yield obtained with N-carboxybenzyl serine methyl ester (23.2%) demonstrated the importance of the thermodynamically-driven nature of the transgalactosylation reaction.
Collapse
|
7
|
Bayón C, Moracci M, Hernáiz MJ. A novel, efficient and sustainable strategy for the synthesis of α-glycoconjugates by combination of a α-galactosynthase and a green solvent. RSC Adv 2015. [DOI: 10.1039/c5ra09301e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthesis of glycoconjugates using an α-galactosynthase in green solvents.
Collapse
Affiliation(s)
- C. Bayón
- Department of Organic
- and Pharmaceutical Chemistry
- Faculty of Pharmacy
- Complutense University of Madrid
- 28040 Madrid
| | - M. Moracci
- Institute of Biosciences and Bioresources
- National Research Council of Italy, Naples
- 80131 Naples
- Italy
| | - M. J. Hernáiz
- Department of Organic
- and Pharmaceutical Chemistry
- Faculty of Pharmacy
- Complutense University of Madrid
- 28040 Madrid
| |
Collapse
|
8
|
Aires-Trapote A, Tamayo A, Rubio J, Rumbero A, Hernáiz MJ. Sustainable synthesis of N-acetyllactosamine using an immobilized β-galactosidase on a tailor made porous polymer. RSC Adv 2015. [DOI: 10.1039/c5ra03527a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient enzymatic synthesis of N-acetyllactosamine has been developed in biosolvents, mediated by the action of an immobilized β-galactosidase on a tailor made porous polymer.
Collapse
Affiliation(s)
| | - Aitana Tamayo
- Instituto de Cerámica y Vidrio (ICV)
- Consejo Superior de Investigaciones Científicas (CSIC)
- Spain
| | - Juan Rubio
- Instituto de Cerámica y Vidrio (ICV)
- Consejo Superior de Investigaciones Científicas (CSIC)
- Spain
| | - Angel Rumbero
- Faculty of Science
- Autonoma University of Madrid
- Spain
| | | |
Collapse
|
9
|
Bissaro B, Saurel O, Arab-Jaziri F, Saulnier L, Milon A, Tenkanen M, Monsan P, O'Donohue MJ, Fauré R. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochim Biophys Acta Gen Subj 2014; 1840:626-36. [DOI: 10.1016/j.bbagen.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
|
10
|
Bayón C, Cortés Á, Berenguer J, Hernáiz MJ. Highly efficient enzymatic synthesis of Galβ-(1→3)-GalNAc and Galβ-(1→3)-GlcNAc in ionic liquids. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sandoval M, Civera C, Berenguer J, García-Blanco F, Hernaiz MJ. Optimised N-acetyl-d-lactosamine synthesis using Thermus thermophilus β-galactosidase in bio-solvents. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Bayón C, Cortés Á, Aires-Trapote A, Civera C, Hernáiz MJ. Highly efficient and regioselective enzymatic synthesis of β-(1→3) galactosides in biosolvents. RSC Adv 2013. [DOI: 10.1039/c3ra40860d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Gu Y, Jérôme F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 2013; 42:9550-70. [DOI: 10.1039/c3cs60241a] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Vincent V, Aghajari N, Pollet N, Boisson A, Boudebbouze S, Haser R, Maguin E, Rhimi M. The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie van Leeuwenhoek 2012. [PMID: 23180374 DOI: 10.1007/s10482-012-9852-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe(2+) and 1.6 mM Mg(2+). Purified protein displayed a high catalytic efficiency of 102 s(-1) mM(-1) for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis β-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature.
Collapse
Affiliation(s)
- Violette Vincent
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets, Bases Moléculaires des Systèmes Infectieux-UMR 5086, CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines-FR3302, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pérez-Sánchez M, Sandoval M, Hernáiz MJ. Bio-solvents change regioselectivity in the synthesis of disaccharides using Biolacta β-galactosidase. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Aldea L, García JI, Mayoral JA. Multiphase enantioselective Kharasch–Sosnovsky allylic oxidation based on neoteric solvents and copper complexes of ditopic ligands. Dalton Trans 2012; 41:8285-9. [DOI: 10.1039/c2dt30352c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|