1
|
Aydin Z, Keskinates M, Armagan E, Altinok BY, Bayrakci M. A hemicyanine-based dual-responsive fluorescent sensor for the detection of lithium and cyanide ions: application in living cells. Anal Bioanal Chem 2025; 417:3127-3139. [PMID: 40180666 PMCID: PMC12103329 DOI: 10.1007/s00216-025-05852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
A hemicyanine-based colorimetric and fluorometric sensor, 2-(2-(2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecin-12-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium iodide (MH-5), was developed and synthesized to detect Li+ and CN- ions in DMSO-PBS buffer solution (10 mM, pH 7.25, v/v 1:9). MH-5 displayed a rapid and highly selective colorimetric response to both Li+ and CN-, indicated by a distinct color change from pink to pale pink in the presence of Li+ and to colorless upon CN- detection, without interference from other cations or anions. The interaction mechanisms of MH-5 with Li+ and CN- ions were investigated using various analytical techniques, including 1H NMR, ESI-MS, FT-IR spectroscopy, and Job's plot analysis. These studies suggest that CN- is detected through nucleophilic addition to the indolium moiety of MH-5, while Li+ detection occurs via coordination with oxygen atoms in the crown ether structure. The fluorescence-based detection limits for Li+ and CN- were determined to be 0.150 µM and 0.154 µM, respectively. Additionally, MH-5 was evaluated in living cells, demonstrating effective cell penetration and reliable detection of Li+ and CN- ions for potential bio-imaging applications.
Collapse
Affiliation(s)
- Ziya Aydin
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Mukaddes Keskinates
- Department of Environmental Protection Technologies, Kazım Karabekir Vocational School, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Esra Armagan
- Department of Pharmacy Services, Ermenek Uysal and Hasan Kalan Health Services Vocational School, Karamanoglu Mehmetbey University, 70400, Karaman, Turkey
| | - Bahar Yilmaz Altinok
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mevlut Bayrakci
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey.
| |
Collapse
|
2
|
Zhang K, Wang H, Cheng S, Zhang C, Zhai X, Lin X, Chen H, Gao R, Dong W. A benzaldehyde-indole fused chromophore-based fluorescent probe for double-response to cyanide and hypochlorite in living cells. Analyst 2021; 146:5658-5667. [PMID: 34382628 DOI: 10.1039/d1an01015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the rapid development of various industries, cyanide (CN-) and hypochlorite (ClO-) have a tremendously adverse effect on the health of humans and animals. In this study, a fluorescent probe HHTB based on a benzaldehyde-indole fused chromophore was designed to detect cyanide and hypochlorite simultaneously. The synthesized probe was found to have strong anti-interference ability. In addition, the designed probe could respond rapidly to ClO- in just 80 s, while the color changed visibly from red to colorless. Moreover, the response time to CN- was longer (about 160 s), with the apparent color change from red to light red. The ratiometric and colorimetric absorbance variation of HHTB was due to the nucleophilic attack of CN- on the indole C[double bond, length as m-dash]N functional group and the strong oxidization of ClO- which destroyed the C[double bond, length as m-dash]C bonds and the conjugation systems. Furthermore, the probe HHTB responding to ClO- and CN- presented high sensitivity, as the calculated detection limits were 1.18 nM and 1.40 nM, respectively. The probe was also found to have low biological toxicity and was used in living cells successfully. Therefore, it has good application prospect in the field of cell imaging and biomedicine. The binding mechanism of HHTB-CN and the reaction mechanism of HHTB and ClO- were further elucidated by a series of experiments.
Collapse
Affiliation(s)
- Kexin Zhang
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xiangpeng Lin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wei Dong
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
3
|
Comesse S, Alahyen I, Benhamou L, Dalla V, Taillier C. 20 Years of Forging N-Heterocycles from Acrylamides through Domino/Cascade Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1503-7932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractAcrylamides are versatile building blocks that are easily obtained from readily available starting materials. During the last 20 years, these valuable substrates bearing a nucleophilic nitrogen atom and an electrophilic double bond have proven to be efficient domino partners, leading to a wide variety of complex aza-heterocycles of synthetic relevance. In this non-exhaustive review, metal-free and metal-triggered reactions followed by an annulation will be presented; these two approaches allow good modulation of the reactivity of the polyvalent acrylamides.1 Introduction2 Metal-Free Annulations2.1 Domino Reactions Triggered by a Michael Addition2.2 Domino Reactions Triggered by an Aza-Michael Addition2.3 Domino Processes Triggered by an Acylation Reaction2.4 Domino Reactions Triggered by a Baylis–Hillman Reaction2.5 Cycloadditions and Domino Reactions2.6 Miscellaneous Domino Reactions3 Metal-Triggered/Mediated Annulations3.1 Zinc-Promoted Transformations3.2 Rhodium-Catalyzed Functionalization/Annulation Cascades3.3 Cobalt-Catalyzed Functionalization/Annulation Cascades3.4 Ruthenium-Catalyzed Functionalization/Annulation Cascades3.5 Iron-Catalyzed Functionalization/Annulation Cascades3.6 Palladium-Catalyzed Functionalization/Annulation Cascades3.7 Copper-Catalyzed Transformations3.8 Transition Metals Acting in Tandem in Domino Processes4 Radical Cascade Reactions5 Conclusion
Collapse
|
4
|
3,3,3′,3′-Tetramethyl-2,2′-diphenyl-3H,3′H-5,5′-biindole. MOLBANK 2020. [DOI: 10.3390/m1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The palladium-catalyzed homocoupling of 5-iodo-3,3-dimethyl-2-phenyl-3H-indole afforded 3,3,3′,3′-tetramethyl-2,2′-diphenyl-3H,3′H-5,5′-biindole in 65% yield. This previously unreported compound was fully characterized by NMR, IR and HRMS data and its optical properties were studied by UV/vis and fluorescence spectroscopy.
Collapse
|
5
|
Žukauskaitė Ž, Buinauskaitė V, Solovjova J, Malinauskaitė L, Kveselytė A, Bieliauskas A, Ragaitė G, Šačkus A. Microwave-assisted synthesis of new fluorescent indoline-based building blocks by ligand free Suzuki-Miyaura cross-coupling reaction in aqueous media. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Wang L, Zhao D, Liu C, Nie G. Low-potential facile electrosynthesis of free-standing poly(1H-benzo[g]indole) film as a yellow-light-emitter. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Wang
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 People's Republic of China
| | - Dan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 People's Republic of China
| | - Changlong Liu
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 People's Republic of China
| | - Guangming Nie
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 People's Republic of China
| |
Collapse
|
7
|
Steponavičiūtė R, Martynaitis V, Bieliauskas A, Šačkus A. Synthesis of new fluorescent building blocks via the microwave-assisted annulation reaction of 1,1,2-trimethyl-1H-benzo[e]indole with acrylic acid and its derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|