1
|
Della Sala P, Iuliano V, De Rosa M, Talotta C, Del Regno R, Neri P, Geremia S, Hickey N, Gaeta C. Deep-Cavity Calix[4]naphth[4]arene Macrocycles: Synthesis, Conformational Features, and Solid-State Structures. Molecules 2024; 29:4142. [PMID: 39274992 PMCID: PMC11396966 DOI: 10.3390/molecules29174142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
We recently introduced calix[n]naphth[m]arenes as a novel class of deep-cavity hybrid macrocycles constituted by phenol (n) and naphthalene (m) units. In this study, we report the synthesis, conformational analysis, spectroscopic properties, and solid-state structures of calix[4]naphth[4]arene (C4N4) and its permethylated analog (C4N4-Me), thereby expanding the calix[n]naphth[m]arene family. C4N4 was synthesized through a 2 + 2 fragment coupling macrocyclization under acidic conditions, where the solvent played a crucial role in selectively forming the C4N4 derivative. The X-ray structure of C4N4 reveals a chair-like 1,2,3,4-alternate conformation characterized by two opposing 3/4-cone moieties stabilized by intramolecular hydrogen bonds. In contrast, the X-ray structure of C4N4-Me exhibits a 1,3,5,7-alternate conformation.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Veronica Iuliano
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Rocco Del Regno
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Wada K, Nagata Y, Cui L, Ono T, Akine S, Ohtani S, Kato K, Fa S, Ogoshi T. Self-Inclusion Complexation of Electron-Accepting Guest into Electron-Donating Cyclic Host by Photoexcitation. Angew Chem Int Ed Engl 2024; 63:e202404409. [PMID: 38609333 DOI: 10.1002/anie.202404409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Self-inclusion complexes consisting of host-guest conjugates are one of the unique supramolecular structures because they form in-state and out-state depending on the external stimuli. Despite many reports of the stimuli-responsive self-inclusion complex formation, study of the structural relaxation from out-state to in-state by photoexcitation has been unexplored. Herein, we report that an electron-donating host and an electron-accepting guest conjugate exhibits the structural relaxation from out-state to in-state by photoexcitation. Formation of the in-state in the excited state resulted in exciplex emission along with the locally excited emission from the out-state. Moreover, this structural relaxation by photoexcitation was suppressed not only by temperature, but also by the presence of guest molecules, resulting in changes in the ratio of the dual emission intensities.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
3
|
Zhu Y, Escorihuela J, Wang H, Sue ACH, Zuilhof H. Tunable Supramolecular Ag +-Host Interactions in Pillar[ n]arene[ m]quinones and Ensuing Specific Binding to 1-Alkynes. Molecules 2023; 28:7009. [PMID: 37894487 PMCID: PMC10609613 DOI: 10.3390/molecules28207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed an improved, robust synthesis of a series of pillar[6]arenes with a varying number (0-3) of quinone moieties in the ring. This easy-to-control variation yielded a gradually less electron-rich cavity in going from zero to three quinone units, as shown from the strength of host-guest interactions with silver ions. Such macrocycle-Ag2 complexes themselves were shown to display an unprecedented, sharp distinction between terminal alkynes, which strongly bound to such complexes, and internal alkynes, internal alkenes and terminal alkenes, which do hardly bind.
Collapse
Affiliation(s)
- Yumei Zhu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, 46100 València, Spain
| | - Haiying Wang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Andrew C.-H. Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen 361005, China
| | - Han Zuilhof
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
4
|
Swirepik O, Smith JN, White NG. Balancing on a Knife's Edge: Studies on the Synthesis of Pillar[6]arene Derivatives. J Org Chem 2023. [PMID: 37339270 DOI: 10.1021/acs.joc.3c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Pillar[6]arenes are established as crucial building blocks in supramolecular chemistry; however, they can be difficult to synthesize, particularly in the absence of large solubilizing substituents. In this work, we explore variability in literature syntheses of pillar[6]arene derivatives and suggest that the outcome is dependent on whether oligomeric intermediates stay in solution long enough for the thermodynamically favorable macrocyclization to occur. We demonstrate that in a previously capricious BF3·OEt2-mediated procedure, ≤5 mol % of a Brønsted acid can slow down the reaction to favor macrocycle formation.
Collapse
Affiliation(s)
- Oscar Swirepik
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
JothiNayaki S, Ramya R, Srividhya S, Kiruthika J, Ramya K, Karthiga S, Arunachalam M, Kavitha D. Antibacterial potentials of pillar[5]arene, pillar[4]arene[1]quinone derivative and their isatin inclusion complexes. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2173072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sekar JothiNayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ravindhiran Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sankar Srividhya
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Jeyavelraman Kiruthika
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Krishnamurthy Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sivarajan Karthiga
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Murugan Arunachalam
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Dhandapani Kavitha
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
6
|
Kim S, Park IH, Ju H, Lee Y, Kim JR, Jung JH, Lee SS, Lee E. Solvent-Dependent Self-Assembly of a Pillar[5]arene-Based Poly-Pseudo-Rotaxane Linked and Threaded by Silver(I) Trifluoroacetate: A Double Role. Inorg Chem 2023; 62:2058-2064. [PMID: 36662552 DOI: 10.1021/acs.inorgchem.2c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the supramolecule area, the fabrication of a new concept called polyrotaxanes or poly-pseudo-rotaxanes remains challenging. We herein report the formation of a poly-pseudo-rotaxane in which the same salt-type guest serves both linking and threading in the resulting structure. The combination of A1/A2-thiopyridyl pillar[5]arene (L) and silver(I) trifluoroacetate in CHCl3/CH3OH afforded a one-dimensional (1D) poly-pseudo-rotaxane. In this structure, to our surprise, the AgCF3CO2 guest not only links the di-armed L ligands via an infinite -L-Ag-L-Ag- arrangement but also threads into a pillar[5]arene cavity in a dimer form, (AgCF3CO2)2. In contrast, the same reaction in CH2Cl2/CH3OH yielded a simple 1D coordination polymer because an included CH2Cl2 molecule in the pillar[5]arene cavity prevents the threading of the silver(I) trifluoroacetate guest. Comparative 1H- and 19F-NMR studies support the solvent-dependent poly-pseudo-rotaxane formation at a lower concentration of L.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Huiyeong Ju
- Korea Basic Science Institute (KBSI), Western Seoul Center, 150, Bugahyeon-ro, Seoul 03759, South Korea
| | - Yelim Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Joon Rae Kim
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| |
Collapse
|
7
|
Li H, Han X, Yu W, Zhang L, Wei M, Wang Z, Kong F, Wang W. Dimethoxypillar[5]arene knitted porous polymers for efficient removal of organic micropollutants from water. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
8
|
Kiruthika J, Arunachalam M. Pillar[5]arene-based cross-linked polymer for the rapid adsorption of iodine from water and vapor phases. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
11
|
Li XY, Lin D, Xu YS, Li Y, Zhou P, Peng AZ, Wang HJ, Wei Y, Yan Y, Shi WJ, Wang SS, Xie L. Thermodynamic-dominated stereoselective meshing of molecular nano-links based on fluorenes. Synlett 2022. [DOI: 10.1055/a-1815-3619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The path-selectivity and stereoselectivity of gridization pathways into fluorene-based Drawing Hand Grids (DHGs-F) are precisely modulated through tuning acid conditions and side-chain effects. BF3•OEt2 supports the realization of the gridization path (rac-DHG1-F, yield: 82%, meso-DHG1-F, yield: 11%). On the contrary, CF3SO3H will lead to the enhancements in polymerization pathways (about 85% yield). When the side chain is a methoxy group, rac-DHG1-F and meso-DHG1-F will be obtained. However, when the side chain is a group without an oxygen atom, only rac-DHG1-F can be obtained (de = 100%). Moreover, through excitonic physical proper-ties, rac-DHGs-F exhibits a more π-electronic delocalization, potentially serving as the intriguing tactic strategy to modulate the optoelectronic properties.
Collapse
Affiliation(s)
- Xiao yan Li
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongqing Lin
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yun shan Xu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yang Li
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ping Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ai Zhong Peng
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Hong Jian Wang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ying Wei
- nstitute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, China
| | - Yongxia Yan
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, China
| | - Wen Jing Shi
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - sha sha Wang
- Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommu, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Linghai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
12
|
Schmidt M, Esser B. Cavity-promotion by pillar[5]arenes expedites organic photoredox-catalysed reductive dehalogenations. Chem Commun (Camb) 2021; 57:9582-9585. [PMID: 34546245 DOI: 10.1039/d1cc03221f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficiency of the photo-induced electron transfer in photoredox catalysis is limited by the diffusional collision of the excited catalyst and the substrate. We herein present cavity-bound photoredox catalysts, which preassociate the substrates, leading to significantly shortened reaction times. A pillar[5]arene serves as the cavity and phenothiazine as a catalyst in the reductive dehalogenation of aliphatic bromides as a proof of concept reaction.
Collapse
Affiliation(s)
- Maximilian Schmidt
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany. .,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
13
|
Della Sala P, Del Regno R, Di Marino L, Calabrese C, Palo C, Talotta C, Geremia S, Hickey N, Capobianco A, Neri P, Gaeta C. An intramolecularly self-templated synthesis of macrocycles: self-filling effects on the formation of prismarenes. Chem Sci 2021; 12:9952-9961. [PMID: 34349965 PMCID: PMC8317625 DOI: 10.1039/d1sc02199k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl- and propyl-prism[6]arenes are obtained in high yields and in short reaction times, independent of the nature and size of the solvent, in the cyclization of 2,6-dialkoxynaphthalene with paraformaldehyde. PrS[6]Et or PrS[6]nPr adopt, both in solution and in the solid state, a folded cuboid-shaped conformation, in which four inward oriented alkyl chains fill the cavity of the macrocycle. On these bases, we proposed that the cyclization of PrS[6]Et or PrS[6]nPr occurs through an intramolecular thermodynamic self-templating effect. In other words, the self-filling of the internal cavity of PrS[6]Et or PrS[6]nPr stabilizes their cuboid structure, driving the equilibrium toward their formation. Molecular recognition studies, both in solution and in the solid state, show that the introduction of guests into the macrocycle cavity forces the cuboid scaffold to open, through an induced-fit mechanism. An analogous conformational change from a closed to an open state occurs during the endo-cavity complexation process of the pentamer, PrS[5]. These results represent a rare example of a thermodynamically controlled cyclization process driven through an intramolecular self-template effect, which could be exploited in the synthesis of novel macrocycles.
Collapse
Affiliation(s)
- Paolo Della Sala
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Rocco Del Regno
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Luca Di Marino
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Carmela Calabrese
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Carmine Palo
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via L. Giorgieri 1 I-34127 Trieste Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via L. Giorgieri 1 I-34127 Trieste Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia, "A. Zambelli" Università di Salerno Via Giovanni Paolo II I-84084 Fisciano Italy
| |
Collapse
|
14
|
Grafting Dendrons onto Pillar[5]Arene Scaffolds. Molecules 2021; 26:molecules26082358. [PMID: 33919656 PMCID: PMC8073356 DOI: 10.3390/molecules26082358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
With their ten peripheral substituents, pillar[5]arenes are attractive compact scaffolds for the construction of nanomaterials with a controlled number of functional groups distributed around the macrocyclic core. This review paper is focused on the functionalization of pillar[5]arene derivatives with small dendrons to generate dendrimer-like nanomaterials and bioactive compounds. Examples include non-viral gene vectors, bioactive glycoclusters, and liquid-crystalline materials.
Collapse
|
15
|
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Nagata Y, Suzuki M, Shimada Y, Sengoku H, Nishida S, Kakuta T, Yamagishi TA, Suginome M, Ogoshi T. Holding of planar chirality of pillar[5]arene by kinetic trapping using host-guest interactions with achiral guest solvents. Chem Commun (Camb) 2020; 56:8424-8427. [PMID: 32579635 DOI: 10.1039/d0cc03413d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a solvent-dependent switching and holding of planar chirality of pillar[5]arene with stereogenic carbons at both rims by host-guest complexation with achiral guest solvents. The planar chirality could be held for a given length of time at 25 °C in long linear guest solvents by kinetic trapping through host-guest complexation. The kinetic trapping worked at 25 °C, but not at 60 °C, thus a planar-chiral inversion using kinetic trapping based on host-guest complexation in the long linear solvents was demonstrated.
Collapse
Affiliation(s)
- Yuuya Nagata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Misaki Suzuki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yasuo Shimada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiroki Sengoku
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
17
|
Fa S, Kakuta T, Yamagishi TA, Ogoshi T. Conformation and Planar Chirality of Pillar[n]arenes. CHEM LETT 2019. [DOI: 10.1246/cl.190544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
18
|
Resolution and Racemization of a Planar-Chiral A1/A2-Disubstituted Pillar[5]arene. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butoxycarbonyl (Boc)-protected pillar[4]arene[1]-diaminobenzene (BP) was synthesized by introducing the Boc protection onto the A1/A2 positions of BP. The oxygen-through-annulus rotation was partially inhibited because of the presence of the middle-sized Boc substituents. We succeeded in isolating the enantiopure RP (RP, RP, RP, RP, and RP)- and SP (SP, SP, SP, SP, and SP)-BP, and studied their circular dichroism (CD) spectral properties. As the Boc substituent is not large enough to completely prevent the flip of the benzene units, enantiopure BP-f1 underwent racemization in solution. It is found that the racemization kinetics is a function of the solvent and temperature employed. The chirality of the BP-f1 could be maintained in n-hexane and CH2Cl2 for a long period at room temperature, whereas increasing the temperature or using solvents that cannot enter into the cavity of BP-f1 accelerated the racemization of BP-f1. The racemization kinetics and the thermodynamic parameters of racemization were studied in several different organic solvents.
Collapse
|
19
|
Lan S, Yang X, Shi K, Fan R, Ma D. Pillarquinone‐Based Porous Polymer for a Highly‐Efficient Heterogeneous Organometallic Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shang Lan
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Xuan Yang
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Kejia Shi
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Rong Fan
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Da Ma
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| |
Collapse
|
20
|
Da Pian M, Schalley CA, Fabris F, Scarso A. Insights into the synthesis of pillar[5]arene and its conversion into pillar[6]arene. Org Chem Front 2019. [DOI: 10.1039/c9qo00176j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of pillar[5]arenes from p-dialkoxybenzene and formaldehyde in the presence of iron(iii) chloride and tetramethylammonium chloride under mild reaction conditions was investigated in detail.
Collapse
Affiliation(s)
- Marta Da Pian
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie
- Organische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari Venezia
- 30172 Venezia Mestre
- Italy
| |
Collapse
|
21
|
Mirzaei S, Wang D, Lindeman SV, Sem CM, Rathore R. Highly Selective Synthesis of Pillar[n]arene (n = 5, 6). Org Lett 2018; 20:6583-6586. [DOI: 10.1021/acs.orglett.8b02937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Camille M. Sem
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
22
|
Yang K, Pei Y, Wen J, Pei Z. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun (Camb) 2018; 52:9316-26. [PMID: 27332040 DOI: 10.1039/c6cc03641d] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[n]arenes (n = 5-15) are a novel class of macrocyclic molecules with hydroquinone as the repeating unit linked by methylene bridges at para-positions. Introduced by T. Ogoshi for the first time in 2008, pillararenes have attracted increasing interest and have been widely studied during the last eight years, due to their unique structural advantages as host molecules, such as symmetrical rigid architecture, electron-rich cavities and facile functional modification. In this review, we first describe the syntheses of pillar[n]arenes including cyclooligomerization of pillar[n]arenes and modification of pillar[n]arenes after cyclooligomerization, summarising almost twenty different kinds of guest motifs and dividing them into three types: cationic, neutral and anionic motifs. The main section of this review examines the applications of pillar[n]arenes based on the host-guest interactions in different research fields, including biology, materials science and environmental science. Finally, future research directions and potential for novel applications are discussed.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
23
|
Nazarova AA, Padnya PL, Gilyazeva AI, Khannanov AA, Evtugyn VG, Kutyreva MP, Klochkov VV, Stoikov II. Supramolecular motifs for the self-assembly of monosubstituted pillar[5]arenes with an amide fragment: from nanoparticles to supramolecular polymers. NEW J CHEM 2018. [DOI: 10.1039/c8nj03494j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of solvents on the aggregation properties of novel monosubstituted pillar[5]arenes containing an N-alkylamide fragment have been investigated.
Collapse
Affiliation(s)
- A. A. Nazarova
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
- Institute of Physics
| | - P. L. Padnya
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. I. Gilyazeva
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. A. Khannanov
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - V. G. Evtugyn
- Interdisciplinary Center for Analytical Microscopy
- Kazan Federal University
- Kazan
- Russian Federation
| | - M. P. Kutyreva
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - V. V. Klochkov
- Institute of Physics
- Kazan Federal University
- Kazan
- Russian Federation
| | - I. I. Stoikov
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
- Institute of Physics
| |
Collapse
|
24
|
Nazarova AA, Makhmutova LI, Stoikov II. Synthesis of pillar[5]arenes with a PH-containing fragment. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Trinh TMN, Nierengarten I, Ben Aziza H, Meichsner E, Holler M, Chessé M, Abidi R, Bijani C, Coppel Y, Maisonhaute E, Delavaux-Nicot B, Nierengarten JF. Coordination-Driven Folding in Multi-Zn II -Porphyrin Arrays Constructed on a Pillar[5]arene Scaffold. Chemistry 2017; 23:11011-11021. [PMID: 28570020 DOI: 10.1002/chem.201701622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/12/2023]
Abstract
Pillar[5]arene derivatives bearing peripheral porphyrin subunits have been efficiently prepared from a deca-azide pillar[5]arene building block (17) and ZnII -porphyrin derivatives bearing a terminal alkyne function (9 and 16). For the resulting deca-ZnII -porphyrin arrays (18 and 20), variable temperature NMR studies revealed an intramolecular complexation of the peripheral ZnII -porphyrin moieties by 1,2,3-triazole subunits. As a result, the molecules adopt a folded conformation. This was further confirmed by UV/Vis spectroscopy and cyclic voltammetry. In addition, we have also demonstrated that the coordination-driven unfolding of 18 and 20 can be controlled by an external chemical stimulus. Specifically, addition of an imidazole derivative (22) to solution of 18 or 20 breaks the intramolecular coordination at the origin of the folding. The resulting molecular motions triggered by the addition of the imidazole ligand mimic the blooming of a flower.
Collapse
Affiliation(s)
- Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Haifa Ben Aziza
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France.,Laboratoire d'Applications de la Chimie aux Ressources et Substances, Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Eric Meichsner
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Matthieu Chessé
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances, Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Christian Bijani
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Emmanuel Maisonhaute
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, 75005, Paris, France
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
26
|
Affiliation(s)
- Yossi Zafrani
- School
of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
- The
Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Yoram Cohen
- School
of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
27
|
Nazarova AA, Yakimova LS, Klochkov VV, Stoikov II. Monoaminophosphorylated pillar[5]arenes as hosts for alkaneamines. NEW J CHEM 2017. [DOI: 10.1039/c6nj03345h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New synthesized aminophosphonated pillar[5]arenes form host–guest complexes with aliphatic amines contrary to monoamine macrocycles that tend to self-assemble.
Collapse
Affiliation(s)
- A. A. Nazarova
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - L. S. Yakimova
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - V. V. Klochkov
- Institute of Physics
- Kazan Federal University
- Kazan
- Russian Federation
| | - I. I. Stoikov
- A.M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
- Institute of Physics
| |
Collapse
|
28
|
Abstract
Acid catalyzed condensation between tetramethoxyanthracenes and formaldehyde in the presence of additional benzene-based building blocks leads to hybrid macrocyclic products that are further modified by the Diels–Alder reaction with benzyne to obtain macrocycles with expanded cavities.
Collapse
Affiliation(s)
- Tomasz Boinski
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| |
Collapse
|
29
|
Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem Rev 2016; 116:7937-8002. [PMID: 27337002 DOI: 10.1021/acs.chemrev.5b00765] [Citation(s) in RCA: 996] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Nakamoto
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
30
|
|
31
|
Yakimova LS, Shurpik DN, Gilmanova LH, Makhmutova AR, Rakhimbekova A, Stoikov II. Highly selective binding of methyl orange dye by cationic water-soluble pillar[5]arenes. Org Biomol Chem 2016; 14:4233-8. [DOI: 10.1039/c6ob00539j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bulky/negatively charged substituents of guest anions hinder the substrate entering the π-electron rich pillar[5]arene cavity.
Collapse
Affiliation(s)
- L. S. Yakimova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - D. N. Shurpik
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - L. H. Gilmanova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - A. R. Makhmutova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - A. Rakhimbekova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - I. I. Stoikov
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| |
Collapse
|
32
|
Ogoshi T, Furuta T, Yamagishi TA. Chiral supramolecular polymers consisting of planar-chiral pillar[5]arene enantiomers. Chem Commun (Camb) 2016; 52:10775-8. [DOI: 10.1039/c6cc05929e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymers with diverse chiralities were constructed by supramolecular polymerization of pillar[5]arene-based planar-chiral host–guest conjugates.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Takuya Furuta
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa
- Japan
| |
Collapse
|
33
|
Boinski T, Cieszkowski A, Rosa B, Leśniewska B, Szumna A. Calixarenes with naphthalene units: calix[4]naphthalenes and hybrid[4]arenes. NEW J CHEM 2016. [DOI: 10.1039/c6nj01736c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile, one-step synthesis of new calix[4]naphthalenes and the conformational and complexation properties of the homomacrocycles and the hybrid macrocycle are presented.
Collapse
Affiliation(s)
- T. Boinski
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - A. Cieszkowski
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - B. Rosa
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - B. Leśniewska
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| | - A. Szumna
- Institute of Organic Chemistry
- Polish Academy of Science
- 01-244 Warsaw
- Poland
| |
Collapse
|
34
|
Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 2015; 144:559-68. [DOI: 10.1016/j.talanta.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
|
35
|
Boinski T, Cieszkowski A, Rosa B, Szumna A. Hybrid [n]Arenes through Thermodynamically Driven Macrocyclization Reactions. J Org Chem 2015; 80:3488-95. [DOI: 10.1021/acs.joc.5b00099] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomasz Boinski
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, Warsaw 01-244, Poland
| | - Artur Cieszkowski
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, Warsaw 01-244, Poland
| | - Bartłomiej Rosa
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, Warsaw 01-244, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, Warsaw 01-244, Poland
| |
Collapse
|
36
|
Santra S, Kovalev IS, Kopchuk DS, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Role of polar solvents for the synthesis of pillar[6]arenes. RSC Adv 2015. [DOI: 10.1039/c5ra19569a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient procedure for the synthesis of pillar[6]arenes has been developed.
Collapse
Affiliation(s)
- S. Santra
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
| | - I. S. Kovalev
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
| | - D. S. Kopchuk
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - G. V. Zyryanov
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - A. Majee
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan-731235
- India
| | - V. N. Charushin
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| | - O. N. Chupakhin
- Ural Federal University
- Chemical Engineering Institute
- Yekaterinburg
- Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis
| |
Collapse
|
37
|
Cao J, Shang Y, Qi B, Sun X, Zhang L, Liu H, Zhang H, Zhou X. Synthesis of pillar[n]arenes (n = 5 and 6) with deep eutectic solvent choline chloride 2FeCl3. RSC Adv 2015. [DOI: 10.1039/c4ra15758c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel and distinct method of preparing pillar[n]arenes with high selectivity and efficiency has been achieved by condensation of 1,4-dialkoxybenzene and paraformaldehyde with the deep eutectic solvent in CH2Cl2 at room temperature.
Collapse
Affiliation(s)
- Jin Cao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Yuhan Shang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Bin Qi
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xuzhuo Sun
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou
- China
| | - Lei Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Huiwen Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| |
Collapse
|
38
|
Shurpik DN, Padnya PL, Makhmutova LI, Yakimova LS, Stoikov II. Selective stepwise oxidation of 1,4-decamethoxypillar[5]arene. NEW J CHEM 2015. [DOI: 10.1039/c5nj01951f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arene[m]quinone was synthesized in high yields, and a rule for determining its structure based on the NMR spectra was deduced.
Collapse
Affiliation(s)
- D. N. Shurpik
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - P. L. Padnya
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - L. I. Makhmutova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - L. S. Yakimova
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| | - I. I. Stoikov
- Kazan Federal University
- A.M. Butlerov Chemical Institute
- Kazan
- Russian Federation
| |
Collapse
|
39
|
Stoikova EE, Sorvin MI, Shurpik DN, Budnikov HC, Stoikov II, Evtugyn GA. Solid‐Contact Potentiometric Sensor Based on Polyaniline and Unsubstituted Pillar[5]Arene. ELECTROANAL 2014. [DOI: 10.1002/elan.201400494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ekaterina E. Stoikova
- Analytical Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| | - Michail I. Sorvin
- Analytical Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| | - Dmitry N. Shurpik
- Organic Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| | - Herman C. Budnikov
- Analytical Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| | - Ivan I. Stoikov
- Organic Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| | - Gennady A. Evtugyn
- Analytical Chemistry Department of Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russian Federation
| |
Collapse
|
40
|
Milev R, Lopez-Pacheco A, Nierengarten I, Trinh TMN, Holler M, Deschenaux R, Nierengarten JF. Preparation of Pillar[5]arene-Based [2]Rotaxanes from Acyl Chlorides and Amines. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
ELECTROCHEMICAL BEHAVIOR OF PILLAR[5]ARENE ON GLASSY CARBON ELECTRODE AND ITS INTERACTION WITH Cu2+ AND Ag+ IONS. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
|
43
|
Ogoshi T, Ueshima N, Sakakibara F, Yamagishi TA, Haino T. Conversion from Pillar[5]arene to Pillar[6–15]arenes by Ring Expansion and Encapsulation of C60 by Pillar[n]arenes with Nanosize Cavities. Org Lett 2014; 16:2896-9. [DOI: 10.1021/ol501039u] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate
School of Natural Science and Technology, Kanazawa University, Kakuma-machi,
Kanazawa, 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi,
Saitama, 332-0012, Japan
| | - Naosuke Ueshima
- Graduate
School of Natural Science and Technology, Kanazawa University, Kakuma-machi,
Kanazawa, 920-1192, Japan
| | - Fumiyasu Sakakibara
- Graduate
School of Natural Science and Technology, Kanazawa University, Kakuma-machi,
Kanazawa, 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate
School of Natural Science and Technology, Kanazawa University, Kakuma-machi,
Kanazawa, 920-1192, Japan
| | - Takeharu Haino
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
44
|
Li ZY, Zhang Y, Zhang CW, Chen LJ, Wang C, Tan H, Yu Y, Li X, Yang HB. Cross-Linked Supramolecular Polymer Gels Constructed from Discrete Multi-pillar[5]arene Metallacycles and Their Multiple Stimuli-Responsive Behavior. J Am Chem Soc 2014; 136:8577-89. [DOI: 10.1021/ja413047r] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhong-Yu Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Yanyan Zhang
- Shanghai
Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, P.R. China
| | - Chang-Wei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Li-Jun Chen
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Chao Wang
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Hongwei Tan
- Department
of Chemistry, Beijing Normal University, Beijing 100050, P.R. China
| | - Yihua Yu
- Shanghai
Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, P.R. China
| | - Xiaopeng Li
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
45
|
|
46
|
Ogoshi T, Ueshima N, Akutsu T, Yamafuji D, Furuta T, Sakakibara F, Yamagishi TA. The template effect of solvents on high yield synthesis, co-cyclization of pillar[6]arenes and interconversion between pillar[5]- and pillar[6]arenes. Chem Commun (Camb) 2014; 50:5774-7. [DOI: 10.1039/c4cc01968g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have successfully synthesized a pillar[6]arene in high yield and a co-pillar[6]arene by a thermodynamically controlled cyclization process.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
- JST
- PRESTO
| | - Naosuke Ueshima
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| | - Tomohiro Akutsu
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| | - Daiki Yamafuji
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| | - Takuya Furuta
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| | - Fumiyasu Sakakibara
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa, Japan
| |
Collapse
|
47
|
Kothur RR, Hall J, Patel BA, Leong CL, Boutelle MG, Cragg PJ. A low pH sensor from an esterified pillar[5]arene. Chem Commun (Camb) 2014; 50:852-4. [DOI: 10.1039/c3cc48637k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An esterified pillar[5]arene, incorporated into a PVC membrane, displays a non-Nernstian response to changes in pH.
Collapse
Affiliation(s)
- Raghuram Reddy Kothur
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton BN2 4GJ, UK
| | - Jessica Hall
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton BN2 4GJ, UK
- The Regis School
- Bognor Regis, UK
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton BN2 4GJ, UK
| | - Chi Leng Leong
- Department of Bioengineering
- Imperial College London
- London SW7 2AZ, UK
| | | | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton BN2 4GJ, UK
| |
Collapse
|
48
|
Zhang H, Zhao Y. Pillararene-Based Assemblies: Design Principle, Preparation and Applications. Chemistry 2013; 19:16862-79. [DOI: 10.1002/chem.201301635] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Ogoshi T, Ueshima N, Yamagishi TA. An Amphiphilic Pillar[5]arene as Efficient and Substrate-Selective Phase-Transfer Catalyst. Org Lett 2013; 15:3742-5. [DOI: 10.1021/ol4016546] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Naosuke Ueshima
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
50
|
Ogoshi T, Akutsu T, Yamafuji D, Aoki T, Yamagishi TA. Solvent- and Achiral-Guest-Triggered Chiral Inversion in a Planar Chiralpseudo[1]Catenane. Angew Chem Int Ed Engl 2013; 52:8111-5. [DOI: 10.1002/anie.201302675] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Indexed: 11/05/2022]
|