1
|
Niu L, Song N, Wang X, Ding S. Internally Functionalized Dendrimers Based on Fully Substituted 1,2,3-Triazoles. Macromol Rapid Commun 2022; 43:e2200375. [PMID: 35766341 DOI: 10.1002/marc.202200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Being one important class in dendrimer chemistry, internally functionalized dendrimers (IFDs) are still exiguous. Here we demonstrate the first construction of IFDs involving fully substituted 1,2,3-triazole rings as interior functionality carriers. Through divergent or convergent synthetic protocols established on the efficient iridium-catalyzed annulation of internal 1-thioalkynes with organic azides (IrAAC), sequence-controlled heterolayered dendrimers with different branched structures are achieved in a convenient manner. 1 H NMR, MS and SEC characterizations well identify their architecture and high purity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lijiao Niu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ningning Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Affiliation(s)
- Lijiao Niu
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Kalra P, Kaur R, Singh G, Singh H, Singh G, Pawan, Kaur G, Singh J. Metals as “Click” catalysts for alkyne-azide cycloaddition reactions: An overview. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Alami O, Laurent R, Majoral JP, El Brahmi N, El Kazzouli S, Caminade AM. Copper complexes of phosphorus dendrimers and their properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018; 136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
Nanomedicine, which is an application of nanotechnologies in healthcare is developed to improve the treatments and lives of patients suffering from a range of disorders and to increase the successes of drug candidates. Within the nanotechnology universe, the remarkable unique and tunable properties of dendrimers have made them promising tools for diverse biomedical applications such as drug delivery, gene therapy and diagnostic. Up-to-date, very few dendrimers has yet gained regulatory approval for systemic administration, why? In this critical review, we briefly focus on the list of desired basic dendrimer requirements for decision-making purpose by the scientists (go/no-go decision), in early development stages, to become clinical candidates, and to move towards Investigational New Drugs (IND) application submission. In addition, the successful translation between research and clinic should be performed by the implementation of a simple roadmap to jump the 'valley of death' successfully.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP, 44099, 31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex, France.
| |
Collapse
|
6
|
Sharghi H, Aberi M, Shiri P. Supported benzimidazole-salen Cu(II) complex: An efficient, versatile and highly reusable nanocatalyst for one-pot synthesis of hybrid molecules. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry; Shiraz University; Shiraz 71454 I. R. Iran
| | - Mahdi Aberi
- Department of Chemistry; Shiraz University; Shiraz 71454 I. R. Iran
| | - Pezhman Shiri
- Department of Chemistry; Shiraz University; Shiraz 71454 I. R. Iran
| |
Collapse
|
7
|
Lee CH, Soldatov DV, Tzeng CH, Lai LL, Lu KL. Design of a Peripheral Building Block for H-Bonded Dendritic Frameworks and Analysis of the Void Space in the Bulk Dendrimers. Sci Rep 2017; 7:3649. [PMID: 28623266 PMCID: PMC5473840 DOI: 10.1038/s41598-017-03684-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 01/27/2023] Open
Abstract
Three dendrimers, (t-Bu-G 2 N) 2 , CC(t-Bu-G 1 N) 3 and (t-Bu-G 1 N) 2 , with 3,5-di-tert-butyl amidobenzene as a common peripheral moiety were prepared in 64-83% yields and characterized. The bulk solids had high BET surface areas of 136-138 m2/g, which were similar for the three dendrimers in spite of their different molecular weight (ranging from 1791 to 2890). It was concluded that the peripheral amide groups do not imbed in the interstitial space of neighbouring dendrimer molecules but rather build a supramolecular architecture through strong intermolecular H-bonds. This mode of assembly generates voids in the bulk dendrimers responsible for sorption properties. The X-ray crystal structure analysis of a compound representing the peripheral moiety of the dendrimers and the FT-IR and powder-XRD data for (t-Bu-G 1 N) 2 suggest the proposed supramolecular structure. The isosteric heats of CO2 sorption (Q st) for (t-Bu-G 2 N) 2 were significantly higher than those for the other two dendrimers, which is consistent with the formation of a different type of voids within the interstitial space of the molecule. It is suggested that the interstitial void space can be designed and tuned to adjust its properties to a particular task, such as the separation of gases or a catalytic reaction facilitated by the dendrimer.
Collapse
Affiliation(s)
- Cheng-Hua Lee
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Dmitriy V Soldatov
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Chung-Hao Tzeng
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan.
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
8
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tsai MJ, Hsieh JW, Lai LL, Cheng KL, Liu SH, Lee JJ, Hsu HF. Converting Nonliquid Crystals into Liquid Crystals by N-Methylation in the Central Linker of Triazine-Based Dendrimers. J Org Chem 2016; 81:5007-13. [PMID: 27203100 DOI: 10.1021/acs.joc.6b00555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two triazine-based dendrimers were successfully prepared in 60-75% yields. These newly prepared dendrimers 2a and 2b containing the -NMe(CH2)2NMe- and the -NMe(CH2)4NMe- linkers between two G3 dendrons, respectively, exhibit columnar phases during the thermal process. However, the corresponding dendrimers 1a and 1b containing the -NH(CH2)2NH- and the -NH(CH2)4NH- linkers between two G3 dendrons, respectively, do not show any LC phases on thermal treatment. Computational investigations on molecular conformations reveal that N-methylation of the dendritic central linker leads dendrimers to possess more isomeric conformations and thus successfully converts non-LC dendrimers (1a and 1b) into LC dendrimers (2a and 2b).
Collapse
Affiliation(s)
- Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Jei-Way Hsieh
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Kung-Lung Cheng
- Material and Chemical Research Laboratories Industrial Research Institute , Hsinchu 300, Taiwan
| | - Shih-Hsien Liu
- Material and Chemical Research Laboratories Industrial Research Institute , Hsinchu 300, Taiwan
| | - Jey-Jau Lee
- National Synchrotron Radiation Research Center , HsinChu Science Park, Hsinchu 300, Taiwan
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University , Tamsui 251, Taiwan
| |
Collapse
|
10
|
Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Cyclopropanation reactions catalysed by dendrimers possessing one metalloporphyrin active site at the core: linear and sigmoidal kinetic behaviour for different dendrimer generations. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Lai LL, Hsieh JW, Chang YH, Kuo MY, Cheng KL, Liu SH, Lee JJ, Hsu HF. An Unconventional Approach to Induce Liquid-Crystalline Phases of Triazine-Based Dendrons by Breaking Their Self-Assembly into Dimers. Chemistry 2015; 21:13336-43. [PMID: 26332231 DOI: 10.1002/chem.201501743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 02/04/2023]
Abstract
Three triazine-based dendrons (1 a-c) were successfully prepared in 70-83 % yields. These newly prepared dendrons are found to be liquid crystalline (LC). Computational investigations on molecular conformations and dipoles of triazine-based dendrons reveal that the substituent on the central triazine unit interrupts strong dipole or H-bond interactions to avoid dimeric formation. The obtained dendrons, not favouring self-assembly into dimers but showing LC behaviours, provides evidence for an approach contrary to the conventional method of inducing LC behaviours of dendrons by dimer or trimer formation, mostly through H-bond interactions.
Collapse
Affiliation(s)
- Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, No.1 University Rd., Puli, Nantou, Taiwan 545 (Taiwan).
| | - Jei-Way Hsieh
- Department of Applied Chemistry, National Chi Nan University, No.1 University Rd., Puli, Nantou, Taiwan 545 (Taiwan)
| | - Yung-Hao Chang
- Department of Applied Chemistry, National Chi Nan University, No.1 University Rd., Puli, Nantou, Taiwan 545 (Taiwan)
| | - Ming-Yu Kuo
- Department of Applied Chemistry, National Chi Nan University, No.1 University Rd., Puli, Nantou, Taiwan 545 (Taiwan)
| | - Kung-Lung Cheng
- Material and Chemical Research Laboratories, Industrial Research Institute, Hsinchu, Taiwan 300 (Taiwan)
| | - Shih-Hsien Liu
- Material and Chemical Research Laboratories, Industrial Research Institute, Hsinchu, Taiwan 300 (Taiwan)
| | - Jey-Jau Lee
- No.101 Hsin-Ann Rd., HsinChu Science Park, Hsinchu, Taiwan 300 (Taiwan)
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University, Tamsui, Taiwan 251 (Taiwan).
| |
Collapse
|
14
|
Wessig P, Budach D, Thünemann AF. Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties. Chemistry 2015; 21:10466-71. [PMID: 26094735 DOI: 10.1002/chem.201501386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/10/2022]
Abstract
The development of novel dendrimers containing oligospiroketal (OSK) rods as building blocks is described. The linkage between the core unit (CU), branching units (BU), and OSK rods relies on the CuAAC reaction between terminal alkynes and azides. Two different strategies of dendrimer synthesis were investigated and it was found that the convergent approach is clearly superior to the divergent one. SAXS measurements and MD simulations indicate that the obtained dendrimer features a globular structure with very low density. Obviously, the OSK rods stabilize a rather loose mass-fractal structure.
Collapse
Affiliation(s)
- Pablo Wessig
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany), Fax: (+49) 3319775065 http://ag-wessig.chem.uni-potsdam.de.
| | - Dennis Budach
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany), Fax: (+49) 3319775065 http://ag-wessig.chem.uni-potsdam.de
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87, 12205 Berlin (Germany)
| |
Collapse
|
15
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Svenson S. The dendrimer paradox – high medical expectations but poor clinical translation. Chem Soc Rev 2015; 44:4131-44. [DOI: 10.1039/c5cs00288e] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review was written with the intention to critically evaluate the status of dendrimers as drug carriers and find answers as to why this class of compounds has not translated into the clinic despite 40 years of research.
Collapse
|
17
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
18
|
Bhaumik A, Samanta S, Pathak T. Enantiopure 1,4,5-trisubstituted 1,2,3-triazoles from carbohydrates: applications of organoselenium chemistry. J Org Chem 2014; 79:6895-904. [PMID: 25010213 DOI: 10.1021/jo5009564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of stable vinyl selenone-modified furanosides has been synthesized for the first time. These 2π-partners undergo 1,3-dipolar cycloaddition reactions with a wide range of organic azides to afford enantiopure trisubstituted triazoles. Furanosyl rings opened up during triazole synthesis to generate polyfunctionalized molecules, ready to undergo further transformations. This strategy is one of the most convenient methods for the synthesis of enantiopure 1,4,5-trisubstituted 1,2,3-triazoles where the chiral components are attached to C-4 or C-5 position of triazole ring. These triazoles are formed in a regioselective manner, and several pairs of regioisomeric triazoles have also been synthesized. The approach affords densely functionalized triazoles, which are amenable to further modifications because of the presence of aldehyde and hydroxyl groups. This powerful and practical route adds to the arsenals of chemists and biologists interested in the synthesis and applications of triazoles.
Collapse
Affiliation(s)
- Atanu Bhaumik
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | | | | |
Collapse
|
19
|
Lai LL, Hsieh JW, Cheng KL, Liu SH, Lee JJ, Hsu HF. A Small Change in Central Linker Has a Profound Effect in Inducing Columnar Phases of Triazine-Based Unconventional Dendrimers. Chemistry 2014; 20:5160-6. [DOI: 10.1002/chem.201303913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/21/2014] [Indexed: 12/19/2022]
|
20
|
|
21
|
Lee CY, Held R, Sharma A, Baral R, Nanah C, Dumas D, Jenkins S, Upadhaya S, Du W. Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers. J Org Chem 2013; 78:11221-8. [PMID: 24127771 PMCID: PMC3875327 DOI: 10.1021/jo401603d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.
Collapse
Affiliation(s)
- Choon Young Lee
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Rich Held
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ajit Sharma
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Rom Baral
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Cyprien Nanah
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Dan Dumas
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Shannon Jenkins
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Samik Upadhaya
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Wenjun Du
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
22
|
Kayet A, Pathak T. 1,5-Disubstituted 1,2,3-Triazolylation at C1, C2, C3, C4, and C6 of Pyranosides: A Metal-Free Route to Triazolylated Monosaccharides and Triazole-Linked Disaccharides. J Org Chem 2013; 78:9865-75. [DOI: 10.1021/jo401576n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anirban Kayet
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Tanmaya Pathak
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| |
Collapse
|
23
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2013. [DOI: 10.1016/s0040-4020(13)01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
|