1
|
Abdelgawwad AMA, Roca-Sanjuán D, Francés-Monerris A. Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications. J Chem Phys 2023; 159:224106. [PMID: 38078522 DOI: 10.1063/5.0170949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
In this paper, we explore the molecular basis of combining photodynamic therapy (PDT), a light-triggered targeted anticancer therapy, with the traditional chemotherapeutic properties of the well-known cytotoxic agent gemcitabine. A photosensitizer prerequisite is significant absorption of biocompatible light in the visible/near IR range, ideally between 600 and 1000 nm. We use highly accurate multiconfigurational CASSCF/MS-CASPT2/MM and TD-DFT methodologies to determine the absorption properties of a series of gemcitabine derivatives with the goal of red-shifting the UV absorption band toward the visible region and facilitating triplet state population. The choice of the substitutions and, thus, the rational design is based on important biochemical criteria and on derivatives whose synthesis is reported in the literature. The modifications tackled in this paper consist of: (i) substitution of the oxygen atom at O2 position with heavier atoms (O → S and O → Se) to red shift the absorption band and increase the spin-orbit coupling, (ii) addition of a lipophilic chain at the N7 position to enhance transport into cancer cells and slow down gemcitabine metabolism, and (iii) attachment of aromatic systems at C5 position to enhance red shift further. Results indicate that the combination of these three chemical modifications markedly shifts the absorption spectrum toward the 500 nm region and beyond and drastically increases spin-orbit coupling values, two key PDT requirements. The obtained theoretical predictions encourage biological studies to further develop this anticancer approach.
Collapse
Affiliation(s)
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, 46071 València, Spain
| | | |
Collapse
|
2
|
Gaware S, Kori S, Serrano JL, Dandela R, Hilton S, Sanghvi YS, Kapdi AR. Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine). J Flow Chem 2023; 13:1-18. [PMID: 37359287 PMCID: PMC10019434 DOI: 10.1007/s41981-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s41981-023-00265-1.
Collapse
Affiliation(s)
- Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| | - Jose Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Stephen Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX UK
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, California, Encinitas CA92024-6615 USA
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| |
Collapse
|
3
|
Budow-Busse S, Jana SK, Kondhare D, Daniliuc C, Seela F. 8-Furylimidazolo-2'-deoxycytidine: crystal structure, packing, atropisomerism and fluorescence. Acta Crystallogr C Struct Chem 2022; 78:141-147. [PMID: 35245210 PMCID: PMC8896525 DOI: 10.1107/s2053229622001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
8-Furylimidazolo-2'-deoxycytidine (furImidC), C14H14N4O5, is a fluorescent analogue of 2'-deoxycytidine, also displaying the same recognition face. As a constituent of DNA, furImidC forms extraordinarily strong silver-mediated self-pairs. Crystal structure determination revealed that furImidC adopts two types of disordered residues: the sugar unit and the furyl moiety. The disorder of the sugar residue amounts to an 87:13 split. The disorder of the furyl ring results from axial chirality at the C8-C2'' bond connecting the nucleobase to the heterocycle. The two atropisomers are present in unequal proportions [occupancies of 0.69 (2) and 0.31 (2)], and the nucleobase and the furyl moiety are coplanar. Considering the atomic sites with predominant occupancy, an anti conformation with χ = - 147.2 (7)° was found at the glycosylic bond and the 2'-deoxyribosyl moiety shows a C2'-endo (S, 2T1) conformation, with P = 160.0°. A 1H NMR-based conformational analysis of the furanose puckering revealed that the S conformation predominates also in solution. In the solid state, two neighbouring furImidC molecules are arranged in a head-to-tail fashion, but with a notable tilt of the molecules with respect to each other. Consequently, one N-H...N hydrogen bond is found for neighbouring molecules within one layer, while a second N-H...N hydrogen bond is formed to a molecule of an adjacent layer. In addition, hydrogen bonding is observed between the nucleobase and the sugar residue. A Hirshfeld surface analysis was performed to visualize the intermolecular interactions observed in the X-ray study. In addition, the fluorescence spectra of furImidC were measured in solvents of different polarity and viscosity. furImidC responds to microenvironmental changes (polarity and viscosity), which is explained by a hindered rotation of the furyl residue in solvents of high viscosity.
Collapse
Affiliation(s)
- Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sunit K. Jana
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
4
|
Hashoul D, Shapira R, Falchenko M, Tepper O, Paviov V, Nissan A, Yavin E. Red-emitting FIT-PNAs: "On site" detection of RNA biomarkers in fresh human cancer tissues. Biosens Bioelectron 2019; 137:271-278. [PMID: 31121464 DOI: 10.1016/j.bios.2019.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
Abstract
To date, there are limited approaches for the direct and rapid visualization (on site) of tumor tissues for pathological assessment and for aiding cytoreductive surgery. Herein, we have designed FIT-PNAs (forced-intercalation-peptide nucleic acids) to detect two RNA cancer biomarkers. Firstly, a lncRNA (long noncoding RNA) termed CCAT1, has been shown as an oncogenic lncRNA over-expressed in a variety of cancers. The latter, an mRNA termed KRT20, has been shown to be over-expressed in metastases originating from colorectal cancer (CRC). To these FIT-PNAs, we have introduced the bis-quinoline (BisQ) cyanine dye that emits light in the red region (605-610 nm) of the visible spectrum. Most strikingly, spraying fresh human tissue taken from patients during cytoreductive surgery for peritoneal metastasis of colon cancer with an aqueous solution of CCAT1 FIT-PNA results in bright fluorescence in a matter of minutes. In fresh healthy tissue (from bariatric surgeries), no appreciable fluorescence is detected. In addition, a non-targeted FIT-PNA shows no fluorescent signal after spraying this FIT-PNA on fresh tumor tissue emphasizing the specificity of these molecular sensors. This study is the first to show on-site direct and immediate visualization of an RNA cancer biomarker on fresh human cancer tissues by topical application (spraying) of a molecular sensor.
Collapse
Affiliation(s)
- Dina Hashoul
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Rachel Shapira
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Maria Falchenko
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Odelia Tepper
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Vera Paviov
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Aviram Nissan
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | - Eylon Yavin
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
5
|
Baiazitov RY, Sydorenko N, Ren H, Moon YC. Unexpected Observation of the Dimroth Rearrangement in the Ribosylation of 4-Aminopyrimidines. J Org Chem 2017; 82:5881-5889. [PMID: 28493695 DOI: 10.1021/acs.joc.7b00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for the preparation of 1-(N-ribofuranosyl)-6-imino-1,6-dihydropyrimidin-4-amines 3 or 4-(N-ribofuranosyl)-6-aminopyrimidines 4 via glycosylation of 4-aminopyrimidines 2 or 5 is described. Silylated 4-aminopyrimidines 2 or 5 upon ribosylation with 1 provide products 3. When intermediates 3 contain a strongly electron-withdrawing group, such as C(4)-Cl or C(5)-NO2, they rearrange to products 4 in the presence of aqueous ammonia. A mechanism is proposed that involves a ring-opening/ring-closing (Dimroth) rearrangement.
Collapse
Affiliation(s)
- Ramil Y Baiazitov
- PTC Therapeutics, Inc. , 100 Corporate Ct., South Plainfield, New Jersey 07080, United States
| | - Nadiya Sydorenko
- PTC Therapeutics, Inc. , 100 Corporate Ct., South Plainfield, New Jersey 07080, United States
| | - Hongyu Ren
- PTC Therapeutics, Inc. , 100 Corporate Ct., South Plainfield, New Jersey 07080, United States
| | - Young-Choon Moon
- PTC Therapeutics, Inc. , 100 Corporate Ct., South Plainfield, New Jersey 07080, United States
| |
Collapse
|
6
|
Mei H, Ingale SA, Seela F. Imidazolo-dC metal-mediated base pairs: purine nucleosides capture two Ag(+) ions and form a duplex with the stability of a covalent DNA cross-link. Chemistry 2014; 20:16248-57. [PMID: 25336305 DOI: 10.1002/chem.201404422] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/13/2022]
Abstract
8-Phenylimidazolo-dC ((ph) ImidC, 2) forms metal-mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent "purine" 2'-deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6. Owing to the ease of nucleobase deprotonation, the new Ag(+) -mediated base pair containing a "purine" skeleton is much stronger than that derived from the pyrrolo- [3,4-d]pyrimidine system ((ph) PyrdC, 1). The silver-mediated (ph) ImidC-(ph) ImidC base pair fits well into the DNA double helix and has the stability of a covalent cross-link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857; Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | | | | |
Collapse
|
7
|
Abstract
![]()
A family
of extended 5-modified-6-aza-uridines was obtained via
Suzuki coupling reactions with a common brominated precursor. Extending
the conjugated-6-aza-uridines with substituted aryl rings increases
the push–pull interactions yielding enhanced bathochromic shifts
and solvatochromism compared to the parent nucleosides. For example,
the methoxy substituted derivative 1d displays λmax abs around 375 nm, with visible emission maxima at
486 nm (Φ = 0.74) and 525 nm (Φ = 0.02) in dioxane and
water, respectively.
Collapse
Affiliation(s)
- Patrycja A Hopkins
- Department of Chemistry and Biochemistry, University of California , San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | |
Collapse
|
8
|
Kovaliov M, Wachtel C, Yavin E, Fischer B. Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes. Org Biomol Chem 2014; 12:7844-58. [PMID: 25177827 DOI: 10.1039/c4ob01185f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.
Collapse
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
9
|
Kovaliov M, Weitman M, Major DT, Fischer B. Phenyl-imidazolo-cytidine Analogues: Structure–Photophysical Activity Relationship and Ability To Detect Single DNA Mismatch. J Org Chem 2014; 79:7051-62. [DOI: 10.1021/jo5011944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Weitman
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
10
|
Kovaliov M, Segal M, Kafri P, Yavin E, Shav-Tal Y, Fischer B. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe. Bioorg Med Chem 2014; 22:2613-21. [PMID: 24726303 DOI: 10.1016/j.bmc.2014.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Abstract
A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Meirav Segal
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 91120, Israel
| | - Pinhas Kafri
- Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eylon Yavin
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 91120, Israel
| | - Yaron Shav-Tal
- Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
11
|
Abstract
We have developed a simple method to synthesize 6-seleno-2'-deoxyguanosine (SedG) by selectively replacing the 6-oxygen atom with selenium. This selenium-atom-specific modification (SAM) alters the optical properties of the naturally occurring 2'-deoxyguanosine (dG). Unlike the native dG, the UVabsorption of SedG is significantly influenced by the pH of the aqueous solution. Moreover, SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions. Furthermore, SedG has noticeable fluorescence in non-aqueous solutions, indicating its sensitivity to environmental changes. This is the first time a fluorescent nucleoside by single-atom alteration has been observed. Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins, such as membrane-transporter proteins.
Collapse
Affiliation(s)
- Kaur Manindar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|