1
|
Zhu WL, He H, Huang YS, Wang YT, Li YG, Wu X. Enantioselective Synthesis of 2-Azanorbornanes: Chiral Trisimidazoline-Catalyzed Desymmetrizing Transannular Bromoaminocyclization. Org Lett 2025; 27:3193-3198. [PMID: 40116651 DOI: 10.1021/acs.orglett.5c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
An enantioselective desymmetrizing transannular bromoaminocyclization of cyclopentenylamines has been achieved by using C3-symmetric trisimidazoline catalysis. This protocol could directly provide a range of chiral 2-azanorbornanes in excellent yields (up to 99%) and enantioselectivities (up to 97.5:2.5 enantiomeric ratio). The resulting enantioenriched 2-azanorbornanes are easily converted to synthetically useful building blocks. Further mechanistic investigations show that the presence of three imidazoline groups of the catalyst is crucial to the success of the enantioselective transformation.
Collapse
Affiliation(s)
- Wan-Li Zhu
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao He
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong-Shuang Huang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ya-Ting Wang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Murakami R, Mori T, Murata K, Fuwa H. Total Synthesis of Exiguolide Stereoisomers: Impact of Stereochemical Permutation on Reactivity, Conformation, and Biological Activity. J Org Chem 2025; 90:753-767. [PMID: 39718544 DOI: 10.1021/acs.joc.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
(-)-Exiguolide is a marine macrolide natural product with potent anticancer activity. In this study, the total synthesis of exiguolide stereoisomers, (9R)-exiguolide, (9R,13S)-exiguolide, and (9R,13S,19R)-exiguolide, was achieved by capitalizing on our macrocyclization/transannular pyran cyclization strategy. The impact of the stereochemical permutation on the reactivity of advanced intermediates, the conformation of the macrocyclic skeleton, and the antiproliferative activity against human cancer cells were investigated in detail. The total synthesis of (9R,13S)-exiguolide and (9R,13S,19R)-exiguolide was completed in much the same way as that of the parent natural product using stereoisomeric building blocks. Nevertheless, the reactivity of the (9R,13S)- and (9R,13S,19R)-series of intermediates in macrocyclic ring-closing metathesis and transannular pyran-forming reactions was significantly different from that of naturally configured counterparts. The conformation of exiguolide stereoisomers, deduced by means of NMR spectroscopic analysis and DFT calculations, was clearly different from that of the parent natural product. Evaluation of the antiproliferative activity of exiguolide and its stereoisomers suggested the importance of the stereochemistry of the macrocyclic skeleton.
Collapse
Affiliation(s)
- Reika Murakami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomo Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
3
|
Iglesias-Menduiña O, Novegil D, Martínez C, Alvarez R, de Lera AR. From Acyclic Intramolecular-[4 + 2]- to Transannular Bis-[4 + 2]-Cycloaddition of the Macrodiolide for the Stereoselective Synthesis of the Octahydronaphthalene Core of Polyenic Macrolactam Sagamilactam. Org Lett 2024; 26:6614-6618. [PMID: 39079003 PMCID: PMC11472481 DOI: 10.1021/acs.orglett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The strategy for the synthesis of the octahydronaphthalene core of natural macrolide sagamilactam has unintentionally evolved from the acyclic intramolecular (IMDA) to the transannular (TADA) Diels-Alder reaction. Lewis acid-promoted IMDA of a protected 2Z,8E,10E-4,6,12-trihydroxy-2,8,10-decatrienal model with a diol of 4,6-anti relative configuration, as proposed by DP4+-based computational studies, afforded the cis-octahydronaphthalene diastereomer through the Re-endo approach. The 26-membered macrodiolide generated, under thermal reaction conditions, the trans-octahydronaphthalene by a double TADA reaction along the desired Si-exo orientation.
Collapse
Affiliation(s)
| | | | - Claudio Martínez
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - Rosana Alvarez
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- CINBIO, Departamento de Química
Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
4
|
Lavernhe R, Domke P, Wang Q, Zhu J. Enantioselective Total Synthesis of (-)-Artatrovirenol A. J Am Chem Soc 2023; 145:24408-24415. [PMID: 37874878 DOI: 10.1021/jacs.3c09683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report herein an enantioselective total synthesis of (-)-artatrovirenol A, a structurally unprecedented cage-like sesquiterpenoid. The synthesis features the following key steps: (a) cationic chiral oxazaborolidinium-catalyzed Diels-Alder reaction between isoprene and ethyl (E)-5-((tert-butyldimethylsilyl)oxy)-4-oxopent-2-enoate for the rapid synthesis of an enantioenriched 10-carbon bicyclic lactone; (b) union of two enantioenriched fragments by a diastereoselective Mukaiyama-Michael addition for the convergent assembly of an intermediate with all 15 carbons of the natural product; (c) intramolecular de Mayo [2 + 2] cycloaddition/retro-aldol sequence transforming a bicyclic compound to a tetracyclic one with concomitant generation of a five- and a seven-membered ring; (d) Lewis acid-triggered intramolecular ring opening of epoxide generating the norbornane substructure; and (e) Chugaev elimination converting the norbornane to the more strained norbornene.
Collapse
Affiliation(s)
- Rémi Lavernhe
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Patrick Domke
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Pedrón M, Sendra J, Ginés I, Tejero T, Vicario JL, Merino P. Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones. Beilstein J Org Chem 2023; 19:477-486. [PMID: 37123091 PMCID: PMC10130903 DOI: 10.3762/bjoc.19.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The contribution to the energy barrier of a series of tethers in transannular cycloadditions of cycloalkenes with hydrazones has been computationally studied by using DFT. The Houk's distortion model has been employed to evaluate the influence of the tether in the cycloaddition reaction. That model has been extended to determine the contribution of each tether and, more importantly, the effect exerted between them. In addition to the distortion induced by the tethers, the entropy effects caused by them has also been studied. The analysis of the evolution of the electron localization function along the reaction revealed the highly concerted character of the reaction.
Collapse
Affiliation(s)
- Manuel Pedrón
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jana Sendra
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Irene Ginés
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (SQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jose L Vicario
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Luis‐Barrera J, Rodriguez S, Uria U, Reyes E, Prieto L, Carrillo L, Pedrón M, Tejero T, Merino P, Vicario JL. Brønsted Acid versus Phase-Transfer Catalysis in the Enantioselective Transannular Aminohalogenation of Enesultams. Chemistry 2022; 28:e202202267. [PMID: 36111677 PMCID: PMC10053555 DOI: 10.1002/chem.202202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Abstract
We have studied the enantioselective transannular aminohalogenation reaction of unsaturated medium-sized cyclic benzosulfonamides by using both chiral Brønsted acid and phase-transfer catalysis. Under optimized conditions, a variety of bicyclic adducts can be obtained with good yields and high enantioselectivities. The mechanism of the reaction was also studied by using computational tools; we observed that the reaction involves the participation of a conformer of the nine-membered cyclic substrate with planar chirality in which the stereochemical outcome is controlled by the relative reactivity of the two pseudorotational enantiomers when interacting with the chiral catalyst.
Collapse
Affiliation(s)
- Javier Luis‐Barrera
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Sandra Rodriguez
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Uxue Uria
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Efraim Reyes
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Liher Prieto
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Luisa Carrillo
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Manuel Pedrón
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Pedro Merino
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Jose L. Vicario
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| |
Collapse
|
7
|
Bis(oxiranes) Containing Cyclooctane Core: Synthesis and Reactivity towards NaN 3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206889. [PMID: 36296482 PMCID: PMC9607513 DOI: 10.3390/molecules27206889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Reactions of oxirane ring opening provide a powerful tool for regio- and stereoselective synthesis of polyfunctional and heterocyclic compounds, widely used in organic chemistry and drug design. Cyclooctane, alongside other medium-sized rings, is of interest as a novel molecular platform for the construction of target-oriented leads. Additionally, cyclooctane derivatives are well known to be prone to transannular reactions, which makes them a promising object in the search for novel approaches to polycyclic structures. In the present work, a series of cyclooctanediones was studied in Corey-Chaykovsky reactions, and novel spirocyclic bis(oxiranes) containing cyclooctane core, namely, 1,5-dioxadispiro[2.0.2.6]dodecane and 1,8-dioxadispiro[2.3.2.3]dodecane, were synthesized. Ring opening of the obtained bis(oxiranes) upon treatment with sodium azide was investigated, and it was found that the reaction path is determined by the reciprocal orientation of oxygen atoms in the oxirane moieties. Diastereomers of the bis(oxiranes) with cis-orientation underwent independent ring opening, supplying corresponding diazidodiols, while in the case of stereoisomers with trans-orientation, domino-like reactions occurred, including intramolecular nucleophilic attack and the formation of a novel three- or six-membered O-containing ring. Summarily, a straightforward approach to polyfunctional compounds containing cyclooctane or oxabicyclo[3.3.1]nonane cores, employing bis(oxiranes), was elaborated.
Collapse
|
8
|
Kang Q, Mu Y, Yuan Y, Wang Y, Jin S, Wang C, Li Y. Diastereoselective Synthesis of Bicyclo[3.3.0]octenones by Copper-Catalyzed Transannular Ring-Closing Reaction. Org Lett 2022; 24:5924-5928. [PMID: 35930708 DOI: 10.1021/acs.orglett.2c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient copper-catalyzed transannular ring-closing reaction of eight-membered rings has been developed that provides a straightforward way to synthesize bicyclo[3.3.0]octane derivatives in good yields. Mechanistic studies revealed that the reaction pathway might involve chlorination followed by the Kornblum reaction. Readily accessible starting materials and good functional group tolerance make this procedure attractive.
Collapse
Affiliation(s)
- Qiongwen Kang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuanyang Mu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuxin Jin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
9
|
Capel E, Luis-Barrera J, Sorazu A, Uria U, Prieto L, Reyes E, Carrillo L, Vicario JL. Transannular Approach to 2,3-Dihydropyrrolo[1,2- b]isoquinolin-5(1 H)-ones through Brønsted Acid-Catalyzed Amidohalogenation. J Org Chem 2022; 87:10062-10072. [PMID: 35880953 PMCID: PMC9361296 DOI: 10.1021/acs.joc.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A transannular approach has been developed for the construction
of pyrrolo[1,2-b]isoquinolinones starting from benzo-fused
nine-membered enelactams. This process takes place in the presence
of a halogenating agent and under Brønsted acid catalysis and
proceeds via a transannular amidohalogenation, followed by elimination.
The reaction has been found to be wide in scope, enabling the formation
of a variety of tricyclic products in good overall yield, regardless
of the substitution pattern in the initial lactam substrate. The reaction
has also been applied to the total synthesis of a reported topoisomerase
I inhibitor and to the formal synthesis of rosettacin. Further extension
of this methodology allows the preparation of 10-iodopyrrolo[1,2-b]isoquinolinones by using an excess of halogenating agent
and these compounds can be further manipulated through standard Suzuki
coupling chemistry into a variety of 10-aryl-substituted pyrrolo[1,2-b]isoquinolinones.
Collapse
Affiliation(s)
- Estefanía Capel
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Luis-Barrera
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ana Sorazu
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraím Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
10
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (-)-Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022; 61:e202202549. [PMID: 35243740 DOI: 10.1002/anie.202202549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/25/2022]
Abstract
Tetrahydropyran-containing macrolactones were synthesized by integrating Meyer-Schuster rearrangement, macrocyclic ring-closing metathesis, and transannular oxa-Michael addition under gold and ruthenium catalysis. Single-step access to a variety of 14- to 20-membered macrolactones containing a tetrahydropyran ring was possible from readily available linear precursors in good yields and with moderate to excellent diastereoselectivity. A 13-step synthesis of (-)-exiguolide, an anticancer marine macrolide, showcased the feasibility of our tandem reaction sequence for macrolactone synthesis and also demonstrated the power of transannular reactions for rapid assembly of the tetrahydropyran rings of the target natural product.
Collapse
Affiliation(s)
- Daichi Mizukami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kei Iio
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yu Onodera
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 981-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
11
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (−)‐Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daichi Mizukami
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Kei Iio
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Mami Oda
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Yu Onodera
- Tohoku University - Katahira Campus: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Haruhiko Fuwa
- Chuo University Department of Applied Chemistry 1-13-27 KasugaBunkyo-ku 112-8551 Tokyo JAPAN
| |
Collapse
|
12
|
Fuwa H. Total Synthesis of (−)-Exiguolide, a Potent Anticancer Marine Macrolide. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Sendra J, Reyes E, Prieto L, Fernández E, Vicario JL. Transannular Enantioselective (3 + 2) Cycloaddition of Cycloalkenone Hydrazones under Brønsted Acid Catalysis. Org Lett 2021; 23:8738-8743. [PMID: 34726408 PMCID: PMC8609578 DOI: 10.1021/acs.orglett.1c03190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrazones derived from cycloalkenones undergo an enantioselective transannular formal (3 + 2) cycloaddition catalyzed by a chiral phosphoric acid. The reaction provides high yields and excellent stereocontrol in the formation of complex adducts with one or two α-tertiary amine moieties at the ring fusion, and these can be converted into very versatile stereodefined decalin- or octahydro-1H-indene-derived 1,3-diamines through simple reductive N-N cleavage.
Collapse
Affiliation(s)
- Jana Sendra
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain.,Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Elena Fernández
- Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
14
|
Martínez-García L, Prado G, Góñez KV, Paleo MR, Sardina FJ. Stereoselective Synthesis of Hydrindane and Hydroazulene Derivatives by Transannular Cyclization of Nine- and Ten-Membered Carbocycles. J Org Chem 2021; 86:13684-13692. [PMID: 34519499 DOI: 10.1021/acs.joc.1c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of cis-fused bicyclic diene dicarboxylates with Li/naphthalene triggers a tandem ring-opening and transannular cyclization process that stereoselectively yields hydroazulenes and hydrindanes derivatives. Cyclononadienyl diesters, which can be isolated after the ring-opening step by judicious choice of the reaction conditions, undergo a tandem conjugate addition/intramolecular Michael addition upon treatment with chiral lithium amides to give bicyclic β-amino esters in a process where 4 contiguous stereocenters are formed with high diastereocontrol. A concise route toward the highly enantioenriched AEF ring core of the aconitine-type alkaloids has been developed as an application of this methodology. The starting cis-fused bicyclic dicarboxylates are easily prepared in one step by reductive alkylation of diisopropyl phthalate (Na/THF, followed by the appropriate bis-electrophiles).
Collapse
Affiliation(s)
- Lucas Martínez-García
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gustavo Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Karen V Góñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Rita Paleo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F Javier Sardina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Magann NL, Blyth MT, Sherburn MS. Five Step Total Synthesis of Lythranidine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas L. Magann
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Mitchell T. Blyth
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Michael S. Sherburn
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
16
|
Magann NL, Blyth MT, Sherburn MS. Five Step Total Synthesis of Lythranidine. Angew Chem Int Ed Engl 2021; 60:18561-18565. [PMID: 34156140 DOI: 10.1002/anie.202107524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/25/2022]
Abstract
A concise synthesis of the alkaloid lythranidine is reported. The strategy exploits the target's local C2 symmetry by adopting a two directional synthetic approach, first in an acyclic environment, then in a cyclic system and finally in a bridged macrocyclic domain. The latter phase of the synthesis, which installs all four stereocenters, involves a thermodynamically controlled, twofold intermolecular/transannular aza-Michael addition and a twofold hydride reduction. The synthesis is one third of the length of the most step-economic previous approach, providing access to gram quantities of the natural product. The broad-spectrum nature of the synthesis is demonstrated through the preparation of three diastereomeric analogues of the natural product.
Collapse
Affiliation(s)
- Nicholas L Magann
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
17
|
Scesa PD, West LM, Roche SP. Role of Macrocyclic Conformational Steering in a Kinetic Route toward Bielschowskysin. J Am Chem Soc 2021; 143:7566-7577. [PMID: 33945689 DOI: 10.1021/jacs.1c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrocyclic furanobutenolide-derived cembranoids (FBCs) are the biosynthetic precursors to a wide variety of highly congested and oxygenated polycyclic (nor)diterpenes (e.g. plumarellide, verrillin, and bielschowskysin). These architecturally complex metabolites are thought to originate from site-selective oxidation of the macrocycle backbone and a series of intricate transannular reactions. Yet the development of a common biomimetic route has been hampered by a lack of synthetic methods for the pivotal furan dearomatization in a regio- and stereoselective manner. To address these shortcomings, a concise strategy of epoxidation followed by a kinetically controlled furan dearomatization is reported. The surprising switch of facial α:β-discrimination observed in the epoxidation of the most strained E-acerosolide versus E-deoxypukalide and E-bipinnatin J derived macrocycles has been rationalized by the variation of the 3D conformational landscape between macrocyclic scaffolds. A careful conformational analysis of these macrocycles by VT-NMR and NOESY experiments at low temperature was supported by DFT calculations to characterize these equilibrating macrocyclic conformers. The shift in conformational topology associated with a swing of the butenolide ring in E-deoxypukalide is in general agreement with the reversal of β-selectivity observed in the epoxidation. We also describe the downstream functionalization of FBC-macrocycles and how the C-7 epoxide configuration is retentively translated to the C-3 stereogenicity in dearomatized products under kinetic control to secure the requisite 3S,7S,8S configurations for the bielschowskysin synthesis. Unlike previously speculated, our results suggest that the most strained FBC-macrocycles bearing a E-(Δ7,8)-alkene moiety may stand as the true biosynthetic precursors to bielschowskysin and several other polycyclic natural products of this class.
Collapse
Affiliation(s)
- Paul D Scesa
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Lyndon M West
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
18
|
Lee KR, Ahn S, Lee SG. Synergistic Pd(0)/Rh(II) Dual Catalytic [6 + 3] Dipolar Cycloaddition for the Synthesis of Monocyclic Nine-Membered N,O-Heterocycles and Their Alder-ene Rearrangement to Fused Bicyclic Compounds. Org Lett 2021; 23:3735-3740. [PMID: 33913334 DOI: 10.1021/acs.orglett.1c01135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic construction of a monocyclic medium-sized N,O-heterocyclic ring represents a formidable challenge in organic synthesis. Herein we report the synergistic palladium(0)/rhodium(II) dual catalytic cycloaddition of vinylpropylene carbonates with N-sulfonyl-1,2,3-triazoles to afford monocyclic nine-membered N,O-heterocycles. The catalytically generated 1,6-dipole-equivalent zwitterionic π-allyl palladium(II) complex and the 1,3-dipole-equivalent α-imino rhodium(II) carbenoid intermediate react with each other in a formal [6 + 3] dipolar cycloaddition to furnish nine-membered oxazonines, which can be transformed into cis-fused [4.3.0] bicyclic compounds via a transannular Alder-ene rearrangement. The tandem one-pot cycloaddition/Alder-ene rearrangement sequence is also possible.
Collapse
Affiliation(s)
- Kyu Ree Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| | - Subin Ahn
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| |
Collapse
|
19
|
Cong H. Design and Synthesis of Paraphenylene-derived Figure-of-eight Rigid Macrocycles. CHEM LETT 2021. [DOI: 10.1246/cl.200887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Huan Cong
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
20
|
Fürstner A. Lessons from Natural Product Total Synthesis: Macrocyclization and Postcyclization Strategies. Acc Chem Res 2021; 54:861-874. [PMID: 33507727 PMCID: PMC7893715 DOI: 10.1021/acs.accounts.0c00759] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Macrocyclic
natural products are plentiful in
the bacteria, archaea,
and eukaryote domains of life. For the significant advantages that
they provide to the producing organisms, evolution has learned how
to implement various types of macrocyclization reactions into the
different biosynthetic pathways and how to effect them with remarkable
ease. Mankind greatly benefits from nature’s pool, not least
because naturally occurring macrocycles or derivatives thereof serve
as important drugs for the treatment of many serious ailments. In stark contrast, macrocyclization reactions are usually perceived
as difficult to accomplish by purely chemical means. While it is true
that ring closure necessarily entails an entropic loss and may result
in the buildup of (considerable) ring strain that must be compensated
for in one way or the other, it is also fair to note tremendous methodological
advances during the last decades that greatly alleviated this traditional
“macrocycle challenge”. It is therefore increasingly
possible to explore the advantages provided by large as well as medium-size
ring systems in a more systematic manner. This venture also holds
the promise of increasing the “chemical space” amenable
to drug development to a considerable extent. In consideration
of this and other important long-term perspectives,
it is appropriate to revisit the current state of the art. To this
end, a number of vignettes are presented, each of which summarizes
a total synthesis project targeting macrocyclic natural products of
greatly different chemotypes using a variety of transformations to
reach these goals. Although we were occasionally facing “dead
ends”, which are also delineated for the sake of a complete
picture, these case studies illustrate the notion that the formation
of a certain macrocyclic perimeter is (usually) no longer seriously
limiting. In addition to substantial progress in the “classical”
repertoire (macrolactonization and macrolactamization
(pateamine A, spirastrellolide, and belizentrin)), various metal-catalyzed
reactions have arguably led to the greatest leaps forward. Among them,
palladium-catalyzed C–C bond formation (roseophilin and nominal
xestocyclamine A) and, in particular, alkene and alkyne metathesis
stand out (iejimalide, spirastrellolide, enigmazole, ingenamine, and
sinulariadiolide). In some cases, different methods were pursued in
parallel, thus allowing for a critical assessment and comparison. To the extent that the macrocyclic challenge is vanishing, the
opportunity arises to focus attention on the postmacrocyclization
phase. One may stipulate that a well-designed cyclization precursor
does not only ensure efficient ring closure but also fosters and streamlines
the steps that come after the event. One way to do so is dual (multiple)
use in that the functional groups serving the actual cyclization reaction
also find productive applications downstream from it rather than being
subject to simple defunctionalization. In this context,
better insight into the conformational peculiarities of large rings
and the growing confidence in their accessibility in a stereochemically
well defined format rejuvenate the implementation of transannular
reactions or reaction cascades that can lead to rapid and substantial
increases in molecular complexity. The examples summarized herein
showcase such possibilities, with special emphasis on tranannular
gold catalysis and the emerging ruthenium-catalyzed trans-hydrometalation chemistry for the selective functionalization of
alkynes.
Collapse
|
21
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2021; 60:446-454. [PMID: 32946141 PMCID: PMC7821135 DOI: 10.1002/anie.202011472] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 01/08/2023]
Abstract
Total synthesis allowed the constitution of the cytotoxic marine macrolides of the formosalide family to be confirmed and their previously unknown stereostructure to be assigned with confidence. The underlying blueprint was inherently modular to ensure that each conceivable isomer could be reached. This flexibility derived from the use of strictly catalyst controlled transformations to set the stereocenters, except for the anomeric position, which is under thermodynamic control; as an extra safety measure, all stereogenic centers were set prior to ring closure to preclude any interference of the conformation adopted by the macrolactone rings of the different diastereomers. Late-stage macrocyclization by ring-closing alkyne metathesis was followed by a platinum-catalyzed transannular 6-exo-dig hydroalkoxylation/ketalization to craft the polycyclic frame. The side chain featuring a very labile unsaturation pattern was finally attached to the core by Stille coupling.
Collapse
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
22
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
23
|
Hu YJ, Li LX, Han JC, Min L, Li CC. Recent Advances in the Total Synthesis of Natural Products Containing Eight-Membered Carbocycles (2009-2019). Chem Rev 2020; 120:5910-5953. [PMID: 32343125 DOI: 10.1021/acs.chemrev.0c00045] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
24
|
Zhang X, Li X, Li JL, Wang QW, Zou WL, Liu YQ, Jia ZQ, Peng F, Han B. Regiodivergent construction of medium-sized heterocycles from vinylethylene carbonates and allylidenemalononitriles. Chem Sci 2020; 11:2888-2894. [PMID: 34122789 PMCID: PMC8157681 DOI: 10.1039/c9sc06377c] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Medium-sized heterocycles exist in a broad spectrum of biologically active natural products and medicinally important synthetic compounds. The construction of medium-sized rings remains challenging, particularly the assembly of different ring sizes from the same type of substrate. Here we report palladium-catalyzed, regiodivergent [5 + 4] and [5 + 2] annulations of vinylethylene carbonates and allylidenemalononitriles. We describe the production of over 50 examples of nine- and seven-membered heterocycles in high isolated yields and excellent regioselectivities. We demonstrate the synthetic utility of this approach by converting a nine-membered ring product to an interesting polycyclic caged molecule via a [2 + 2] transannulation. Mechanistic studies suggest that the [5 + 2] annulation proceeds through palladium-catalyzed ring-opening/re-cyclization from the [5 + 4] adducts. Here we report palladium-catalyzed, regiodivergent [5 + 4] and [5 + 2] annulations of vinylethylene carbonates and allylidenemalononitriles affording over 50 medium-sized heterocycles in high isolated yields with excellent regioselectivities.![]()
Collapse
Affiliation(s)
- Xiang Zhang
- West China School of Pharmacy, Sichuan University Chengdu 610041 China .,Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Wen-Lin Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Zhi-Qiang Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| |
Collapse
|
25
|
Sendra J, Manzano R, Reyes E, Vicario JL, Fernández E. Catalytic Stereoselective Borylative Transannular Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jana Sendra
- Department Química Física i InorgànicaUniversity Rovira i Virgili C/ Marcel⋅lí Domingo s/n Spain
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Ruben Manzano
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Efraim Reyes
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Jose L. Vicario
- Department of Organic Chemistry IIUniversity of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Elena Fernández
- Department Química Física i InorgànicaUniversity Rovira i Virgili C/ Marcel⋅lí Domingo s/n Spain
| |
Collapse
|
26
|
Sendra J, Manzano R, Reyes E, Vicario JL, Fernández E. Catalytic Stereoselective Borylative Transannular Reactions. Angew Chem Int Ed Engl 2020; 59:2100-2104. [PMID: 31730740 DOI: 10.1002/anie.201913438] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 11/09/2022]
Abstract
Medium-sized carbocycles containing an α,β-unsaturated ketone moiety as Michael acceptor site and a ketone moiety as internal electrophilic site are ideal substrates to conduct Cu(I)-catalyzed conjugated borylation followed by electrophilic intramolecular trapping that results into a pioneer transannular borylative ring closing reaction. The relative configuration of three adjacent stereocenters is controlled, giving access to a single diastereoisomer for a wide range of substrates tested. Moreover, when a chiral ligand is incorporated, the reaction provides enantioenriched polycyclic products with up to 99 % ee.
Collapse
Affiliation(s)
- Jana Sendra
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Spain.,Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Ruben Manzano
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Efraim Reyes
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Jose L Vicario
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Elena Fernández
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Spain
| |
Collapse
|
27
|
Mato R, Reyes E, Carrillo L, Uria U, Prieto L, Manzano R, Vicario JL. Catalytic enantioselective domino Michael/transannular aldol reaction under bifunctional catalysis. Chem Commun (Camb) 2020; 56:13149-13152. [DOI: 10.1039/d0cc05981a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral bifunctional tertiary amine/squaramides catalyze the enantioselective Michael/transannular aldol reaction on medium-sized cyclic ketoenones leading to bicycle[5.4.0]undecanes.
Collapse
Affiliation(s)
- Raquel Mato
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Efraim Reyes
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Luisa Carrillo
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Uxue Uria
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Liher Prieto
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Ruben Manzano
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Jose L. Vicario
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| |
Collapse
|
28
|
Mato R, Manzano R, Reyes E, Carrillo L, Uria U, Vicario JL. Catalytic Enantioselective Transannular Morita–Baylis–Hillman Reaction. J Am Chem Soc 2019; 141:9495-9499. [DOI: 10.1021/jacs.9b03679] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Raquel Mato
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Rubén Manzano
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraim Reyes
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L. Vicario
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
29
|
Xu W, Yang X, Fan X, Wang X, Tung C, Wu L, Cong H. Synthesis and Characterization of a Pentiptycene‐Derived Dual Oligoparaphenylene Nanohoop. Angew Chem Int Ed Engl 2019; 58:3943-3947. [DOI: 10.1002/anie.201814482] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Xiao‐Di Yang
- Innovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xiang‐Bing Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Xin Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
30
|
A transannular approach toward lycopodine synthesis. J Antibiot (Tokyo) 2019; 72:494-497. [PMID: 30792516 DOI: 10.1038/s41429-019-0155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/08/2022]
Abstract
A transannular reaction was proposed to access the Lycopodium alkaloid lycopodine. A key bicyclic precursor was synthesized via a ring-closing metathesis reaction. Initial evaluations of the transannular aza-Prins reaction to synthesize lycopodine were reported and discussed.
Collapse
|
31
|
Xu W, Yang X, Fan X, Wang X, Tung C, Wu L, Cong H. Synthesis and Characterization of a Pentiptycene‐Derived Dual Oligoparaphenylene Nanohoop. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814482] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Xiao‐Di Yang
- Innovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xiang‐Bing Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Xin Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Meng Z, Fürstner A. Total Synthesis of (−)-Sinulariadiolide. A Transannular Approach. J Am Chem Soc 2018; 141:805-809. [DOI: 10.1021/jacs.8b12185] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
33
|
Faizullina LK, Galimova YS, Khalilova YA, Salikhov SM, Valeev FA. Aldol-type transformations of levoglucosenone-derived medium-sized keto lactones. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
|
35
|
Construction of a pentacyclic ring system of isoryanodane diterpenoids by SmI2-mediated transannular cyclization. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Maiga-Wandiam B, Corbu A, Massiot G, Sautel F, Yu P, Lin BWY, Houk KN, Cossy J. Intramolecular Diels–Alder Approaches to the Decalin Core of Verongidolide: The Origin of the exo-Selectivity, a DFT Analysis. J Org Chem 2018; 83:5975-5985. [DOI: 10.1021/acs.joc.8b00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Baba Maiga-Wandiam
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75231 - Paris Cedex 05, France
| | - Andrei Corbu
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75231 - Paris Cedex 05, France
| | - Georges Massiot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS, UFR des Sciences Exactes et Naturelles, Campus Sciences, Moulin de la Housse, 51687 - Reims Cedex 2, France
| | - François Sautel
- CNRS/Pierre Fabre USR 3388, Centre de Recherche et Développement Pierre Fabre, 3 avenue Hubert Curien, 31035 - Toulouse Cedex 01, France
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90065, United States
| | - Bernice Wan-Yi Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90065, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90065, United States
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75231 - Paris Cedex 05, France
| |
Collapse
|
37
|
Duhamel T, Stein CJ, Martínez C, Reiher M, Muñiz K. Engineering Molecular Iodine Catalysis for Alkyl–Nitrogen Bond Formation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00286] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Duhamel
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- Facultad de Química, Universidad de Oviedo, C/Julián Claveria, 33006 Oviedo, Spain
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Claudio Martínez
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Rong ZQ, Yang LC, Liu S, Yu Z, Wang YN, Tan ZY, Huang RZ, Lan Y, Zhao Y. Nine-Membered Benzofuran-Fused Heterocycles: Enantioselective Synthesis by Pd-Catalysis and Rearrangement via Transannular Bond Formation. J Am Chem Soc 2017; 139:15304-15307. [DOI: 10.1021/jacs.7b09161] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zi-Qiang Rong
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| | - Li-Cheng Yang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| | - Song Liu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Zhaoyuan Yu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Ya-Nong Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| | - Zher Yin Tan
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| | - Rui-Zhi Huang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Yu Zhao
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Republic of Singapore
| |
Collapse
|
39
|
Karabiyikoglu S, Boon BA, Merlic CA. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction. J Org Chem 2017; 82:7732-7744. [PMID: 28719209 DOI: 10.1021/acs.joc.7b01369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Collapse
Affiliation(s)
- Sedef Karabiyikoglu
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Byron A Boon
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Craig A Merlic
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| |
Collapse
|
40
|
Ma SJ, Yu J, Fan HF, Li ZH, Zhang AL, Zhang Q. Exploring sesquiterpene alkaloid-like scaffolds via Beckmann-transannular remodelling of beta-caryophyllene. RSC Adv 2017. [DOI: 10.1039/c7ra08196k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cascaded Beckmann-transannular protocol transformed macrocyclic beta-caryophyllene into poly-heterocyclic unnatural skeletal types.
Collapse
Affiliation(s)
- Shuang-Jiang Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- PR China
| | - Jie Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- PR China
| | - Hua-Fang Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- PR China
| | - Zi-Han Li
- College of Life Sciences
- Northwest A&F University
- PR China
| | - An-Ling Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- PR China
- State Key Laboratory of Medicinal Chemical Biology
| |
Collapse
|
41
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Schaubach S, Gebauer K, Ungeheuer F, Hoffmeister L, Ilg MK, Wirtz C, Fürstner A. A Two-Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance: Development and Applications to Natural Product Synthesis. Chemistry 2016; 22:8494-507. [DOI: 10.1002/chem.201601163] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Konrad Gebauer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Ungeheuer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | | | - Marina K. Ilg
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
43
|
Choe H, Pham TT, Lee JY, Latif M, Park H, Kang YK, Lee J. Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (-)-11β-Hydroxycurvularin. J Org Chem 2016; 81:2612-7. [PMID: 26894643 DOI: 10.1021/acs.joc.5b02760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first total synthesis and structure revision of (-)-11β-hydroxycurvularin (1b), a macrolide possessing a β-hydroxyketone moiety, were accomplished. The β-hydroxyketone moiety in this natural product was introduced by cleavage of the N-O bond in an isoxazoline ring that was formed diastereoselectively in a 1,5-remote stereocontrolled fashion by employing intramolecular nitrile oxide cycloaddition.
Collapse
Affiliation(s)
- Hyeonjeong Choe
- Drug Discovery Division, Korea Research Institute of Chemical Technology , Yuseong, Daejeon 34114, Republic of Korea
| | - Thuy Trang Pham
- College of Pharmacy, Kangwon National University , 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joo Yun Lee
- Drug Discovery Division, Korea Research Institute of Chemical Technology , Yuseong, Daejeon 34114, Republic of Korea
| | - Muhammad Latif
- Drug Discovery Division, Korea Research Institute of Chemical Technology , Yuseong, Daejeon 34114, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University , 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University , 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University , 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
44
|
Ahlers A, de Haro T, Gabor B, Fürstner A. Concise Total Synthesis of Enigmazole A. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Teresa de Haro
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Barbara Gabor
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
45
|
Ahlers A, de Haro T, Gabor B, Fürstner A. Concise Total Synthesis of Enigmazole A. Angew Chem Int Ed Engl 2015; 55:1406-11. [DOI: 10.1002/anie.201510026] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Teresa de Haro
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Barbara Gabor
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
46
|
He CQ, Chen TQ, Patel A, Karabiyikoglu S, Merlic CA, Houk KN. Distortion, Tether, and Entropy Effects on Transannular Diels–Alder Cycloaddition Reactions of 10–18-Membered Rings. J Org Chem 2015; 80:11039-47. [DOI: 10.1021/acs.joc.5b02288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cyndi Qixin He
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Tiffany Q. Chen
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Ashay Patel
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Sedef Karabiyikoglu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Craig A. Merlic
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biochemical
Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
47
|
Selective Halogen-Lithium Exchange of 1,2-Dihaloarenes for Successive [2+4] Cycloadditions of Arynes and Isobenzofurans. Molecules 2015; 20:19449-62. [PMID: 26512641 PMCID: PMC6331892 DOI: 10.3390/molecules201019449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
Successive [2+4] cycloadditions of arynes and isobenzofurans by site-selective halogen-lithium exchange of 1,2-dihaloarenes were developed, allowing the rapid construction of polycyclic compounds which serve as a useful synthetic intermediates for the preparation of various polyacene derivatives.
Collapse
|
48
|
|
49
|
Karabiyikoglu S, Merlic CA. Transannular [4 + 2] Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Dienynes. Org Lett 2015; 17:4086-9. [DOI: 10.1021/acs.orglett.5b01984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sedef Karabiyikoglu
- Department
of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Craig A. Merlic
- Department
of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
50
|
Akita R, Kawanishi K, Hamura T. Ring Selective Generation of Isobenzofuran for Divergent Access to Polycyclic Aromatic Compounds. Org Lett 2015; 17:3094-7. [DOI: 10.1021/acs.orglett.5b01364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rie Akita
- Department of Applied Chemistry
for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuki Kawanishi
- Department of Applied Chemistry
for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiyuki Hamura
- Department of Applied Chemistry
for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|