1
|
Iio C, Sato K, Mase N, Narumi T. Racemization-free peptide bond formation via 2-nitrobenzensulfonyl strategy for diastereoselective synthesis of ( Z)-fluoroalkene-type peptidomimetics. Org Biomol Chem 2025; 23:4480-4486. [PMID: 40223732 DOI: 10.1039/d5ob00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The Xaa-Pro-type (Z)-fluoroalkene dipeptide isostere (FADI) serves as a versatile surrogate for peptide bonds, effectively restricting cis-trans isomerization of the prolyl amide bond and offering advantages in the development of conformationally constrained peptide analogues. However, the diastereoselective synthesis of tripeptidomimetics incorporating Xaa-Pro-type FADIs is challenging due to the high susceptibility to racemization of the α-stereogenic center during peptide bond formation. Here, we introduce a racemization- and epimerization-free coupling strategy for the stereoselective synthesis of fluoroalkene-type peptidomimetics by reacting Xaa-Pro-type FADIs with amino acid benzyl esters or peptides. This approach leverages the unique properties of the 2-nitrobenzenesulfonyl (Ns) group as an N-terminal protecting group, which promotes sulfonamide anion formation, effectively suppressing α-deprotonation and thereby preventing racemization or epimerization. Our findings highlight the pivotal role of the N-Ns group in peptide synthesis and provide a robust platform for expanding the utility of FADIs in peptidomimetic designing.
Collapse
Affiliation(s)
- Chihiro Iio
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan.
| | - Kohei Sato
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Nobuyuki Mase
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Tetsuo Narumi
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
2
|
Kobayakawa T, Tsuji K, Tamamura H. Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres. Bioorg Med Chem 2024; 110:117811. [PMID: 38959684 DOI: 10.1016/j.bmc.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid β fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Iio C, Sato K, Mase N, Narumi T. Substitution Effects of Alkene Dipeptide Isosteres on Adjacent Peptide Bond Rotation. Chem Pharm Bull (Tokyo) 2024; 72:596-599. [PMID: 38945948 DOI: 10.1248/cpb.c24-00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alkene dipeptide isosteres (ADIs) are promising surrogates of peptide bonds that enhance the bioactive peptide resistance to enzymatic hydrolysis in medicinal chemistry. In this study, we investigated the substitution effects of an ADI on the energy barrier of cis-trans isomerization in the acetyl proline methyl ester (Ac-Pro-OMe) model. The (E)-alkene-type proline analog, which favors a cis-amide conformation, exhibits a lower rotational barrier than native Ac-Pro-OMe. A van't Hoff analysis suggests that the energy barrier is primarily reduced by enthalpic repulsion. It was concluded that although carbon-carbon double bonds and pyrrolidine rings individually increase the rigidity of the incorporation site, their combination can provide structural flexibility and disrupt bioactive conformations. This work provides new insights into ADI-based drug design.
Collapse
Affiliation(s)
- Chihiro Iio
- Graduate School of Medical Photonics, Shizuoka University
| | - Kohei Sato
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Nobuyuki Mase
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Tetsuo Narumi
- Graduate School of Medical Photonics, Shizuoka University
- Graduate School of Integrated Science and Technology, Shizuoka University
| |
Collapse
|
4
|
Park SH, Lee S. Selective Synthesis of ( Z)- and ( E)-β-Fluoro-α,β-Unsaturated Amides Using Palladium-Catalyzed Aminocarbonylation. Org Lett 2023; 25:6925-6930. [PMID: 37690119 DOI: 10.1021/acs.orglett.3c02809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The selective synthesis of (Z)- and (E)-β-fluoro-α,β-unsaturated amides via the palladium-catalyzed aminocarbonylation of 1-fluoro-2,2-diiodovinylarenes is described in the present study. Using {Pd(allyl)Cl}2 as a catalyst and DBU as a base in DMF, the primary product is (Z)-isomers. Conversely, the use of a Xantphos ligand along with {Pd(allyl)Cl}2 and Et3N as the bases in 1,4-dioxane leads to the selective formation of (E)-isomers. Notably, 1-fluoro-2,2-diiodovinylarenes with various substituents on the phenyl ring react with various secondary amines, producing the corresponding (Z)-isomeric amides with a high yield and selectivity. In contrast, (E)-isomeric amides exhibit lower yields and restricted applicability.
Collapse
Affiliation(s)
- Su Hyeon Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Su J, Guo W, Liu Y, Kong L, Zheng H, Zhu G. Cu-catalyzed cascade difluoroalkylation/5- endo cyclization/β-fluorine cleavage of ynones. Chem Commun (Camb) 2023; 59:1821-1824. [PMID: 36722869 DOI: 10.1039/d2cc06068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed, redox-neutral cascade difluoroalkylation/5-endo annulation/β-fluorine cleavage of ynones is developed, providing a direct and stereoselective method to access synthetically important α-monofluoroalkenyl cyclopentanones. Mechanistic studies suggest an unprecedented CuII-assisted β-fluorine fragmentation, which may be valuable for the challenging but important C-F bond activation. Moreover, the in situ generated difluorocarbene was found to serve as an effective reductant for the regeneration of copper(I) catalyst, thus avoiding the addition of external reductants.
Collapse
Affiliation(s)
- Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Wenbin Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
6
|
Bilska-Markowska M, Kaźmierczak M. Horner-Wadsworth-Emmons reaction as an excellent tool in the synthesis of fluoro-containing biologically important compounds. Org Biomol Chem 2023; 21:1095-1120. [PMID: 36632995 DOI: 10.1039/d2ob01969h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective introduction of a double bond motif into a multifunctional organic compound is always a big challenge. The Horner-Wadsworth-Emmons reaction is one of the most reliable, simple, and stereoselective olefination methods, widely used in organic chemistry. To the best of our knowledge, no review article on the application of HWE reaction in the synthesis of fluoroorganic compounds with direct biological interest has been published in recent years. The importance of the HWE reaction should be emphasised due to its simplicity and stereoselectivity. Under mild conditions and in one step, valuable compounds can be obtained. The HWE reaction is primarily a great tool in the synthesis of fluoroolefins that are, among others, peptide bond mimetics. Therefore, it can serve as an indispensable approach to access peptide bioisosteres and, consequently, analogues of numerous enzyme inhibitors. The protocol may be utilized to obtain florinated vinylphosphonate, vinylsulfone or sulfonate derivatives, which exhibit biological activity. In this review article, we would like to summarize the HWE reaction output of the last 12 years (since 2010).
Collapse
Affiliation(s)
- Monika Bilska-Markowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Podversnik H, Jha S, Macheroux P, Breinbauer R. Design and synthesis of efficient fluororethylene-peptidomimetic inhibitors of dipeptidyl peptidase III (DPP3). Bioorg Med Chem 2022; 67:116831. [PMID: 35623134 DOI: 10.1016/j.bmc.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Dipeptidyl peptidase III (DPP3) is a ubiquitously expressed zinc-dependent peptide cutting enzyme and selectively hydrolyses amide bonds to cleave N-terminal dipeptide fragments off of physiologically important oligopeptides. DPP3 has been found in a multitude of different types of cells and appears to be involved in various physiological processes (e.g. nociception, blood pressure control, protein turnover). Using the slowly converted peptide substrate tynorphin (VVYPW) as starting point, we have replaced the scissile bond with a fluoroethylene bioisostere to design ground state inhibitors, which led to the so far most effective peptide-based inhibitor of DPP3.
Collapse
Affiliation(s)
- Harald Podversnik
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, A-8010 Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, A-8010 Graz, Austria; BIOTECHMED, Graz A-8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; BIOTECHMED, Graz A-8010, Austria.
| |
Collapse
|
8
|
Larnaud F, Calata C, Prunier A, Le Guen C, Legay R, Pfund E, Lequeux T. Convergent access to mono-fluoroalkene-based peptidomimetics. Org Biomol Chem 2022; 20:1205-1218. [PMID: 35075471 DOI: 10.1039/d1ob02441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The convergent and selective preparation of (Z)-monofluoroalkene-based dipeptide isosteres from functionalized fluorosulfones as a cornerstone is described. In this approach, the N-terminal amino group is introduced by a conjugate addition reaction of phthalimide onto fluorinated vinylsulfones containing α-amino-acid side chains while the C-terminal motif is linked to the fluorovinylic peptide bond mimic via the Julia-Kocienski reaction between fluorosulfones and substituted aldehydes bearing α-amino-acid side chains.
Collapse
Affiliation(s)
- Florent Larnaud
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Charlène Calata
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Anaïs Prunier
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Clothilde Le Guen
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Rémi Legay
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France.
| |
Collapse
|
9
|
Zhu B, Han H, Su WK, Yan B, Li Z, Yu C, Jiang X. Highly Stereoselective Intramolecular Carbofluorination of Internal α,β-Ynones Promoted by Selectfluor. Org Lett 2021; 23:4488-4492. [PMID: 34029477 DOI: 10.1021/acs.orglett.1c01441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a metal-free intramolecular carbofluorination protocol for the synthesis of tetrasubstituted monofluoroalkenes from internal α,β-ynones and Selectfluor with both high stereoselectivity and broad functional group tolerance. The chelation between tetrafluoroborate anion and the oxygen present in the aldehyde group rendered the reaction highly stereoselective, with the tetrafluoroborate serving as the direct fluorine source. Therefore, with addition of sodium tetrafluoroborate, Selectfluor could be reused several times without sacrificing reactivity.
Collapse
Affiliation(s)
- Bingbin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hang Han
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Boan Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
10
|
Kobayakawa T, Tamamura H. Chloroalkene dipeptide isosteres as peptidomimetics. Methods Enzymol 2021; 656:191-239. [PMID: 34325787 DOI: 10.1016/bs.mie.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date various biologically active peptides have been discovered, characterized and modified for drug discovery. However, the utilization of peptides as therapeutics involves some limitation due to several factors, including low metabolic stability owing to proteolysis and non-specific interactions with multiple off-target molecules. Hence, the development of "peptidomimetics," in which a part or whole of a molecule is modified, is a desirable strategy to enhance the stability or bioactivity of peptide-based drugs. In this situation, we have designed and developed a synthetic method for chloroalkene dipeptide isosteres (CADIs), which involves replacement of an amide bond in peptides with a chloroalkene structure and are classified as peptidomimetics. By a developed synthetic method, an N-tert-butylsulfonyl protected CADI can be obtained utilizing diastereoselective allylic alkylation with organocopper reagents as a key reaction. This CADI can be transformed into an N-fluorenylmethoxycarbonyl protected CADI in short steps. In addition, CADIs are used in Fmoc-based solid-phase peptide synthesis and introduced into a bioactive peptide. Protocols for practical preparation of some CADIs and peptide mimetics containing a CADI are described as detailed recipes.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
11
|
Kobayakawa T, Azuma C, Watanabe Y, Sawamura S, Taniguchi A, Hayashi Y, Tsuji K, Tamamura H. Development of Methods for Convergent Synthesis of Chloroalkene Dipeptide Isosteres and Its Application. J Org Chem 2021; 86:5091-5101. [DOI: 10.1021/acs.joc.0c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chika Azuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Watanabe
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shunsuke Sawamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Liu J, Nie W, Yu H, Shi J. A mechanistic study on Cu(i) catalyzed carboxylation of the C-F bond with CO 2: a DFT study. Org Biomol Chem 2020; 18:9065-9071. [PMID: 33124636 DOI: 10.1039/d0ob01414a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Cu(i) catalyzed carboxylation of the C-F bond recently reported by Yu and co-workers is an excellent method for the construction of complex fluoroacrylate compounds with high regioselectivity. In the present study, theoretical calculations were carried out to investigate the detailed mechanism of the catalytic cycle and the origin of regioselectivity. The calculation results reveal that the overall catalytic cycle proceeds via the migratory insertion of difluoroalkene on the boryl-Cu(i) species, synβ-F elimination, transmetalation, and carboxylation steps. The rate determining step is the carboxylation step, and the migration insertion is the regioselectivity determining step. The regioselectivity for 2,1-insertion is consistent with Yu's experiment, and is determined by both steric and electronic effects.
Collapse
Affiliation(s)
- Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230026, China.
| | - Jing Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Toniolo C, Moretto A, Formaggio F, Broxterman QB, Crisma M. From Amherst (Massachusetts, USA) to Padua (Italy) and back again: Louis A. Carpino's scientifically productive journey. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudio Toniolo
- Department of ChemistryUniversity of Padua Via Marzolo 1, 35131 Padua Italy
- Institute of Biomolecular Chemistry, Padua UnitCNR Via Marzolo 1, 35131 Padua Italy
| | - Alessandro Moretto
- Department of ChemistryUniversity of Padua Via Marzolo 1, 35131 Padua Italy
- Institute of Biomolecular Chemistry, Padua UnitCNR Via Marzolo 1, 35131 Padua Italy
| | - Fernando Formaggio
- Department of ChemistryUniversity of Padua Via Marzolo 1, 35131 Padua Italy
- Institute of Biomolecular Chemistry, Padua UnitCNR Via Marzolo 1, 35131 Padua Italy
| | | | - Marco Crisma
- Institute of Biomolecular Chemistry, Padua UnitCNR Via Marzolo 1, 35131 Padua Italy
| |
Collapse
|
14
|
Adam AT, Fronczek FR, Colby DA. Synthesis of β-Fluoro-α,β-Unsaturated Amides from the Fragmentation of Morpholine 3,3,3-Trifluoropropanamide by Grignard Reagents. Org Lett 2020; 22:2630-2633. [PMID: 32181669 DOI: 10.1021/acs.orglett.0c00599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluoroalkenes serve as bioisosteres to peptide bonds and are resistant to hydrolytic enzymes in vivo. Currently, α-fluoro-α,β-unsaturated carbonyl compounds are readily accessible via general synthetic methods; however, β-fluoro-α,β-unsaturated carbonyl groups are more challenging to construct. To address this need, we have designed a reagent, morpholine 3,3,3-trifluoropropanamide, that creates (E)-β-fluoro-α,β-unsaturated amides upon the addition of many commonly used Grignard reagents. Reactions with this reagent enable a high level of stereocontrol in the fluoroalkene product.
Collapse
Affiliation(s)
- Amna T Adam
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
15
|
Li C, Cao YX, Jin RX, Bian KJ, Qin ZY, Lan Q, Wang XS. Highly stereoselective nickel-catalyzed difluoroalkylation of aryl ketones to tetrasubstituted monofluoroalkenes and quaternary alkyl difluorides. Chem Sci 2019; 10:9285-9291. [PMID: 32055314 PMCID: PMC7003883 DOI: 10.1039/c9sc02806d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
A nickel-catalyzed difluoroalkylation of α-C-H bonds of aryl ketones to furnish highly stereo-defined tetrasubstituted monofluoroalkenes or quaternary alkyl difluorides from secondary or tertiary ketones, respectively, has been established. Mechanistic investigations indicated that these C-H fluoroalkylations proceed via a Ni(i)/Ni(iii) catalytic cycle. An obvious fluorine effect was observed in the reaction, and this reaction has demonstrated high stereoselectivity, mild conditions, and broad substrate scopes, thus enabling the late-stage fluoroalkylation of bioactive molecules. This method offers a solution for expedient construction of monofluoroalkenes from readily available materials, and provides an efficient approach for the synthesis of bioactive fluorinated compounds for the discovery of lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Chao Li
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Yi-Xuan Cao
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Zi-Yang Qin
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Quan Lan
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale , Department of Chemistry , Center for Excellence in Molecular Synthesis of CAS , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
16
|
Kobayakawa T, Matsuzaki Y, Hozumi K, Nomura W, Nomizu M, Tamamura H. Synthesis of a Chloroalkene Dipeptide Isostere-Containing Peptidomimetic and Its Biological Application. ACS Med Chem Lett 2018; 9:6-10. [PMID: 29348803 DOI: 10.1021/acsmedchemlett.7b00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023] Open
Abstract
The first rapid and efficient chemical synthesis of a cyclic Arg-Gly-Asp (RGD) peptide containing a chloroalkene dipeptide isostere (CADI) is reported. By a developed synthetic method, an N-tert-butylsulfonyl protected CADI was obtained utilizing diastereoselective allylic alkylation as a key reaction. This CADI was also transformed into an N-Fmoc protected CADI in a few steps. The CADI was used in Fmoc-based solid-phase peptide synthesis. The first synthesis of a CADI-containing cyclic RGD peptide was successful, and the synthesized CADI-containing peptidomimetic was found to be a more potent inhibitor against integrin-mediated cell attachment than the parent cyclic peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yudai Matsuzaki
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kentaro Hozumi
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-039, Japan
| | - Wataru Nomura
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Motoyoshi Nomizu
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-039, Japan
| | - Hirokazu Tamamura
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
17
|
Tamamura H, Kobayakawa T, Ohashi N. Introduction to Mid-size Drugs and Peptidomimetics. MID-SIZE DRUGS BASED ON PEPTIDES AND PEPTIDOMIMETICS 2018. [DOI: 10.1007/978-981-10-7691-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Drouin M, Paquin JF. Recent progress in the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres. Beilstein J Org Chem 2017; 13:2637-2658. [PMID: 29564002 PMCID: PMC5753175 DOI: 10.3762/bjoc.13.262] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022] Open
Abstract
Monofluoroalkenes are fluorinated motifs that can be used to replace amide bonds. In order to be incorporated into peptides, it is normally necessary to first synthesize a dipeptide where the amide bond has been replaced with a monofluoroalkene. In that context, this review will present the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres described since 2007. Some applications of those compounds will also be presented.
Collapse
Affiliation(s)
- Myriam Drouin
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, Québec (Québec) G1V 0A6, Canada
| | - Jean-François Paquin
- Département de chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, Québec (Québec) G1V 0A6, Canada
| |
Collapse
|
19
|
McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1'-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators. J Am Chem Soc 2017; 139:14077-14089. [PMID: 28906111 PMCID: PMC6052324 DOI: 10.1021/jacs.7b04690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1'-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1'-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1'-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1'-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1'-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1'-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1'-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1'-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.
Collapse
Affiliation(s)
| | | | | | | | - Brendan M. Darnell
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| |
Collapse
|
20
|
Vandamme M, Paquin JF. Eliminative Deoxofluorination Using XtalFluor-E: A One-Step Synthesis of Monofluoroalkenes from Cyclohexanone Derivatives. Org Lett 2017; 19:3604-3607. [PMID: 28653541 DOI: 10.1021/acs.orglett.7b01581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eliminative deoxofluorination of cyclohexanone derivatives using XtalFluor-E is described. The corresponding monofluoroalkenes are obtained in up to 79% yield. Notably, this one-step procedure occurs at room temperature using readily accessible and cost-effective reagents.
Collapse
Affiliation(s)
- Mathilde Vandamme
- CGCC, PROTEO, Département de chimie, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean-François Paquin
- CGCC, PROTEO, Département de chimie, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
21
|
Stereoselective synthesis of Xaa-Yaa type (Z)-chloroalkene dipeptide isosteres via efficient utilization of organocopper reagents mediated allylic alkylation. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Sommer H, Fürstner A. Stereospecific Synthesis of Fluoroalkenes by Silver-Mediated Fluorination of Functionalized Alkenylstannanes. Chemistry 2016; 23:558-562. [PMID: 27883234 DOI: 10.1002/chem.201605444] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The known procedures for the conversion of alkenylstannanes into the corresponding fluoroalkenes suffer from largely variable yields and a limited compatibility with functional groups; most notably, protodestannation becomes a serious issue whenever protic sites are present in the substrate. Outlined in this paper is a convenient alternative with a much improved application profile, which is largely unperturbed by free alcohols and amides of all sorts. Key to success is the use of F-TEDA-PF6 in combination with non-hygroscopic and bench-stable silver phosphinate (AgOP(O)Ph2 ) that acts as an essentially neutral, non-nucleophilic promotor and effective tin-scavenger at the same time. This new method opens many opportunities for late-stage fluorination of elaborate compounds far beyond the scope of the literature procedures, as witnessed by the preparation of a fluorinated macrolide antibiotic, a fluorinated prostaglandin derivative, and a set of fluorinated amino acid surrogates and peptide isosteres.
Collapse
Affiliation(s)
- Heiko Sommer
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
23
|
Kobayakawa T, Tamamura H. Efficient synthesis of Xaa-Gly type (Z)-chloroalkene dipeptide isosteres via organocuprate mediated reduction. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhang D, Liu H, Zhu P, Meng W, Huang Y. One-pot syntheses of N-(α-fluorovinyl)azole derivatives from N-(diphenylmethylene)-2,2,2-trifluoroethanamine. RSC Adv 2016. [DOI: 10.1039/c6ra12187j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-(Diphenylmethylene)-2,2,2-trifluoroethanamine acts as a versatile fluorine-containing building block, and from which N-(α-fluorovinyl)azole derivatives were prepared in a one-pot process.
Collapse
Affiliation(s)
- Donghua Zhang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Haihua Liu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Pengcheng Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Weidong Meng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Yangen Huang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| |
Collapse
|