1
|
Soliman MM, Elwahy AHM, Sayed AM, Ibrahim M, Dawoud MA, Ali SHM, Nady MTS, Hassan NA, Saad W, Abdelhamid IA. Synthesis and antimicrobial evaluation of a new hybrid bis-cyanoacrylamide-based-piperazine containing sulphamethoxazole moiety against rheumatoid arthritis-associated pathogens. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03780-7. [PMID: 39831977 DOI: 10.1007/s00210-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, 13C-NMR, and FTIR spectroscopy. Piperazine-based compounds were screened for in silico studies to understand the antimicrobial activity against infections that may contribute to rheumatoid arthritis symptoms. The tested piperazine compound was also evaluated for its antimicrobial activity against Aspergillus niger, Candida albicans, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeuroginosa ATCC 27853, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 700603. S. aureus showed the highest inhibition, with a zone diameter of 16.0 ± 1.0 mm at a concentration of 0.8 mg/ml. The minimal inhibitory concentration (MIC) for all bacterial species ranged from 5 to 40 mg/ml. In contrast, fungal species were the most resistant to the tested compound. Molecular docking studies were conducted to elucidate the interaction mechanisms, binding energies, and hydrogen bonding interactions within protein-ligand complexes. Molecular docking studies were performed against five bacterial proteins and two fungal proteins, including DNA gyrase subunit B (UniProt ID: Q839Z1), protein RecA of (UniProt ID: P0A7G6), cyclic AMP-AMP-AMP synthase (UniProt ID: P0DTF7), UDP-N-acetylglucosamine 1-carboxyvinyl transferase (UniProt ID: A0A1S5RKE3), and clumping factor A (UniProt ID: Q53653). The tested compound achieved the highest binding score of ∆G = - 10.9 kcal/mol at the cyclic AMP synthase active site (UniProt ID: P0DTF7), forming 26 interactions. The results demonstrated that the synthesized piperazine compound exhibits promising antibacterial and antifungal activities, highlighting its potential as a candidate for antimicrobial development.
Collapse
Affiliation(s)
- Mona M Soliman
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Ahmed M Sayed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Dawoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Menna Tallah S Nady
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nada A Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wessam Saad
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Salem ME, Abdelhamid IA, Elwahy AH, Ragheb MA, Alqahtani AS, Zaki ME, Algethami FK, Mahmoud HK. Novel hybrid thiazoles, bis-thiazoles linked to azo-sulfamethoxazole: Synthesis, docking, and antimicrobial activity. Heliyon 2024; 10:e31082. [PMID: 38813143 PMCID: PMC11133767 DOI: 10.1016/j.heliyon.2024.e31082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
The reaction of sulfamethoxazolehydrazonoyl chloride with thiosemicarbazones, bis-thiosemicarbazones, or 4-amino-3-mercapto-1,2,4-triazole in dioxane in the presence of triethylamine as a basic catalyst at reflux resulted in the regioselective synthesis of thiazoles and bis-thiazoles linked to azo-sulfamethoxazole as novel hybrid molecules. The structures of the new compounds were confirmed using a range of spectra. Each compound's antibacterial properties were evaluated using the agar well-diffusion technique, and most of them demonstrated significant potency. In silico investigations revealed that the described compounds had strong interactions with the binding sites of MurE ligase, tyrosyl-tRNA synthetase, and dihydropteroate synthase, demonstrating inhibitory activity.
Collapse
Affiliation(s)
- Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A. Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H.M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Arwa sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Magdi E.A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Faisal K. Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Huda Kamel Mahmoud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Elwahy AHM, Eid EM, Abdel-Latif SA, Hassaneen HME, Abdelhamid IA. Design, Synthesis, DFT, TD-DFT/PCM Calculations, and Molecular Docking Studies on the Anti-COVID-19, and Anti-SARS Activities of Some New Bis-Thiazoles and Bis-Thiadiazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Elshimaa M. Eid
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
4
|
Gomha SM, Riyadh SM, Farghaly TA, Haggam RA. Synthetic Utility of Bis-Aminomercapto[1,2,4] Triazoles in the Preparation of Bis- Fused Triazoles and Macrocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reda A. Haggam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Aggarwal R, Hooda M, Kumar P, Sumran G. Vision on Synthetic and Medicinal Facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine Scaffold. Top Curr Chem (Cham) 2022; 380:10. [PMID: 35122161 PMCID: PMC8816708 DOI: 10.1007/s41061-022-00365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
The present review article strives to compile the latest synthetic approaches for the synthesis of triazolothiadiazine and its derivatives, along with their diverse pharmacological activities, viz. anticancer, antimicrobial, analgesic and anti-inflammatory, antioxidant, antiviral, enzyme inhibitors (carbonic anhydrase inhibitors, cholinesterase inhibitors, alkaline phosphatase inhibitors, anti-lipase activity, and aromatase inhibitors) and antitubercular agents. The review focuses particularly on the structure–activity relationship of biologically important 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines, which have profound importance in drug design, discovery and development. In silico pharmacokinetic and molecular modeling studies have also been summarized. It is hoped that this review article will be of help to researchers engaged in the development of new biologically active entities for the rational design and development of new target-oriented 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine-based drugs for the treatment of multifunctional diseases.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India. .,CSIR-National Institute of Science Communication and Policy Research, New Delhi, India.
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, 134 003, India
| |
Collapse
|
6
|
Hebishy AMS, Abdelfattah MS, Elmorsy A, Elwahy AHM. Synthesis of novel bis‐ and poly(benzimidazoles) as well as bis‐ and poly(benzothiazoles) as anticancer agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ali M. S. Hebishy
- Chemistry Department, Faculty of ScienceHelwan University Cairo Egypt
| | | | - Abdullah Elmorsy
- Chemistry Department, Faculty of ScienceHelwan University Cairo Egypt
| | | |
Collapse
|
7
|
Hebishy AMS, Abdelfattah MS, Elmorsy A, Elwahy AHM. ZnO nanoparticles catalyzed synthesis of bis- and poly(imidazoles) as potential anticancer agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1726396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ali M. S. Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Abdullah Elmorsy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed H. M. Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Diab HM, Salem ME, Abdelhamid IA, Elwahy AHM. Synthesis of novel star-shaped molecules based on a 1,3,5-triazine core linked to different heterocyclic systems as novel hybrid molecules. RSC Adv 2020; 10:44066-44078. [PMID: 35517173 PMCID: PMC9058422 DOI: 10.1039/d0ra09025e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of novel star-shaped compounds based on an s-triazine core and linked to hexahydroacridinediones, pyrimido[4,5-b]quinolones, 1H-isoquinolino[2,1-a]quinolines, tetrahydro-4H-chromenes, dihydropyrano[2,3-c]pyrazoles, thiazole, or benzothiazole as new hybrid molecules through Michael and Hantzsch reactions is reported. For this purpose, 2,4,6-tris(4-formylphenoxy)benzaldehyde was used as a versatile precursor. The synthesis of novel star-shaped compounds based on an s-triazine core and linked to different heterocycles as new hybrid molecules through Michael and Hantzsch reactions is reported.![]()
Collapse
Affiliation(s)
- Hadeer M. Diab
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Mostafa E. Salem
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
9
|
Salem ME, Darweesh AF, Elwahy AHM. Synthesis of novel scaffolds based on thiazole or triazolothiadiazine linked to benzofuran or benzo[d]thiazole moieties as new hybrid molecules. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1694689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
10
|
Salama SK, Darweesh AF, Abdelhamid IA, Elwahy AHM. p-TSA Catalyzed One-Pot Synthesis of Some Novel Bis(Hexahydroacridine-1,8-Diones) and Bis(Tetrahydrodipyrazolo[3,4-b:4′,3′-e]Pyridines) Derivatives. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1678184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Soad K. Salama
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
11
|
Salem ME, Hosny M, Darweesh AF, Elwahy AHM. Synthesis of novel bis- and poly(aryldiazenylthiazoles). SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1620283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosny
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
12
|
Farag AM, Fahim AM. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Salem ME, Ahmed AA, Darweesh AF, Kühn O, Elwahy AH. Synthesis and DFT calculations of 2-thioxo-1,2-dihydropyridine-3-carbonitrile as versatile precursors for novel pharmacophoric hybrid molecules. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Hosny M, Salem ME, Darweesh AF, Elwahy AHM. Synthesis of Novel Bis(thiazolylchromen-2-one) Derivatives Linked to Alkyl Spacer via
Phenoxy Group. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mohamed Hosny
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Mostafa E. Salem
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science; Cairo University; Giza Egypt
| | | |
Collapse
|
15
|
Salem ME, Darweesh AF, Elwahy AHM. 2-Mercapto-4,6-disubstituted nicotinonitriles: versatile precursors for novel mono- and bis[thienopyridines]. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1471143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mostafa E. Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|