1
|
Faurschou NV, Taaning RH, Pedersen CM. Substrate specific closed-loop optimization of carbohydrate protective group chemistry using Bayesian optimization and transfer learning. Chem Sci 2023; 14:6319-6329. [PMID: 37325141 PMCID: PMC10266441 DOI: 10.1039/d3sc01261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
A new way of performing reaction optimization within carbohydrate chemistry is presented. This is done by performing closed-loop optimization of regioselective benzoylation of unprotected glycosides using Bayesian optimization. Both 6-O-monobenzoylations and 3,6-O-dibenzoylations of three different monosaccharides are optimized. A novel transfer learning approach, where data from previous optimizations of different substrates is used to speed up the optimizations, has also been developed. The optimal conditions found by the Bayesian optimization algorithm provide new insight into substrate specificity, as the conditions found are significantly different. In most cases, the optimal conditions include Et3N and benzoic anhydride, a new reagent combination for these reactions, discovered by the algorithm, demonstrating the power of this concept to widen the chemical space. Further, the developed procedures include ambient conditions and short reaction times.
Collapse
|
2
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Shekunti RK, Tangalipalli S, Dhonthulachitty C, Kothakapu SR, Annapurna PD, Neella CK. N
‐Benzoyl‐4‐dimethylaminopyridinium Chloride: A Lewis Base Adduct for Efficient Poly and Monobenzoylation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Swathi Tangalipalli
- Dept. of M.Sc.Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| | | | - Sridhar Reddy Kothakapu
- Dept. of M.Sc. 5yr Integrated Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| | | | - Chandra Kiran Neella
- Dept. of M.Sc.Chemistry Palamuru University Raichur Road Mahabubnagar Telangana 509001 India
| |
Collapse
|
4
|
Luo T, Zhang Q, Guo YF, Pei ZC, Dong H. Efficient Preparation of 2‐SAc‐Glycosyl Donors and Investigation of Their Application in Synthesis of 2‐Deoxyglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Luo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| | - Qiang Zhang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Zhi-Chao Pei
- Northwest Agriculture and Forestry University College of Chemistry and Pharmacy CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
5
|
Lv J, Liu CY, Guo YF, Feng GJ, Dong H. SnCl2‐catalyzed acetalation/selective‐benzoylation sequence for the synthesis of orthogonally protected glycosyl acceptors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Lv
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Chun-Yang Liu
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Guang-Jing Feng
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
6
|
Abstract
Relative rates for the Lewis base-catalyzed acylation of aryl-substituted 1,2-diols with anhydrides differing in size have been determined by turnover-limited competition experiments and absolute kinetics measurements. Depending on the structure of the anhydride reagent, the secondary hydroxyl group of the 1,2-diol reacts faster than the primary one. This preference towards the secondary hydroxyl group is boosted in the second acylation step from the monoesters to the diester through size and additional steric effects. In absolute terms the first acylation step is found to be up to 35 times faster than the second one for the primary alcohols due to neighboring group effects.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| |
Collapse
|
7
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
8
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Lv J, Zhu JJ, Liu Y, Dong H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl 3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J Org Chem 2020; 85:3307-3319. [PMID: 31984732 DOI: 10.1021/acs.joc.9b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A catalytic amount of FeCl3 combined with benzoyl trifluoroacetone (Hbtfa) (FeCl3/Hbtfa = 1/2) was used to catalyze sulfonylation/acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K2CO3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that FeCl3 initially formed [Fe(btfa)3] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature. Then, Fe(btfa)3 and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jia-Jia Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
10
|
Lv J, Luo T, Zou D, Dong H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Lv
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Tao Luo
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
11
|
Ren B, Zhang L, Zhang M. Progress on Selective Acylation of Carbohydrate Hydroxyl Groups. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| | - Li Zhang
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| | - Mengyao Zhang
- College of Chemistry & Chemical EngineeringXinyang Normal University Nanhu Road 237 Xinyang, Henan 464000 P. R. China
| |
Collapse
|
12
|
Ren B, Zhang M, Xu S, Gan L, Zhang L, Tang L. DBN-Catalyzed Regioselective Acylation of Carbohydrates and Diols in Ethyl Acetate. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Shijie Xu
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lu Gan
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Li Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lin Tang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| |
Collapse
|
13
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
14
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
15
|
Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles. Mol Divers 2019; 23:1065-1084. [PMID: 30666490 DOI: 10.1007/s11030-019-09915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
α-Cyanoketones represent a synthetically attractive scaffold possessing bifunctional reactivity which enabled synthesis of a diversity of products. This involves reaction of nucleophiles with electrophilic carbonyl carbon performing an efficient and regioselective way to acylation reaction, cycloaddition of activated cyano function with dipolarophiles, metal-catalyzed cross-dehydrogenative coupling carbocyanation across C-C multiple bonds as well as hydrocyanation. This review provides the recent developments in the chemistry of α-cyanoketones which will be beneficial for researchers and scientists in such field.
Collapse
|
16
|
Lv J, Luo T, Zhang Y, Pei Z, Dong H. Regio/Site-Selective Benzoylation of Carbohydrates by Catalytic Amounts of FeCl 3. ACS OMEGA 2018; 3:17717-17723. [PMID: 31458369 PMCID: PMC6643987 DOI: 10.1021/acsomega.8b02360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/06/2018] [Indexed: 05/10/2023]
Abstract
This work uncovered the regio/site-selective benzoylation of 1,2- and 1,3-diols and glycosides containing a cis-vicinal diol using a catalytic amount of FeCl3 with the assistance of acetylacetone. FeCl3 may initially form [Fe(acac)3] (acac = acetylacetonate) with excess acetylacetone in the presence of diisopropylethylamine (DIPEA) in acetonitrile at room temperature. Then, benzoylation was catalyzed by Fe(acac)3 with added benzoyl chloride in the presence of DIPEA under mild conditions as reported. This reaction produced selectivities and isolated yields similar to or slightly lower than the reaction using Fe(acac)3 as a catalyst in most cases. The result provides not only the green and convenient selective benzoylation method associated with the most inexpensive catalysts but also the possibility that the effects of various metal salts and ligands on the regioselective protection can be extensively investigated in future study to obtain the optimized catalytic system.
Collapse
Affiliation(s)
- Jian Lv
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Tao Luo
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Ying Zhang
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhichao Pei
- College
of Chemistry and Pharmacy, Northwest A&F
University, Yangling, 712100 Shaanxi, P. R. China
| | - Hai Dong
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
17
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
18
|
Ren B, Gan L, Zhang L, Yan N, Dong H. Diisopropylethylamine-triggered, highly efficient, self-catalyzed regioselective acylation of carbohydrates and diols. Org Biomol Chem 2018; 16:5591-5597. [PMID: 30027976 DOI: 10.1039/c8ob01464g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A diisopropylethylamine (DIPEA)-triggered, self-catalyzed, regioselective acylation of carbohydrates and diols is presented. The hydroxyl groups can be acylated by the corresponding anhydride in MeCN in the presence of a catalytic amount of DIPEA. This method is comparatively green and mild as it uses less organic base compared with other selective acylation methods. Mechanistic studies indicate that DIPEA reacts with the anhydride to form a carboxylate ion, and then the carboxylate ion could catalyze the selective acylation through a dual H-bonding interaction.
Collapse
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering, Xinyang Normal University, Nanhu Road 237, Xinyang, Henan 464000, P. R. China.
| | | | | | | | | |
Collapse
|
19
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
20
|
Xu H, Zhang Y, Dong H, Lu Y, Pei Y, Pei Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Xu H, Ren B, Zhao W, Xin X, Lu Y, Pei Y, Dong H, Pei Z. Regioselective mono and multiple alkylation of diols and polyols catalyzed by organotin and its applications on the synthesis of value-added carbohydrate intermediates. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Lu Y, Hou C, Ren J, Xin X, Xu H, Pei Y, Dong H, Pei Z. Regioselective Benzoylation of Diols and Carbohydrates by Catalytic Amounts of Organobase. Molecules 2016; 21:E641. [PMID: 27196888 PMCID: PMC6274181 DOI: 10.3390/molecules21050641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/21/2016] [Accepted: 05/10/2016] [Indexed: 11/26/2022] Open
Abstract
A novel metal-free organobase-catalyzed regioselective benzoylation of diols and carbohydrates has been developed. Treatment of diol and carbohydrate substrates with 1.1 equiv. of 1-benzoylimidazole and 0.2 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in MeCN under mild conditions resulted in highly regioselective benzoylation for the primary hydroxyl group. Importantly, compared to most commonly used protecting bulky groups for primary hydroxyl groups, the benzoyl protective group offers a new protection strategy.
Collapse
Affiliation(s)
- Yuchao Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Jingli Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Xiaoting Xin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Hengfu Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| | - Hai Dong
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
23
|
Peng P, Linseis M, Winter RF, Schmidt RR. Regioselective Acylation of Diols and Triols: The Cyanide Effect. J Am Chem Soc 2016; 138:6002-9. [PMID: 27104625 DOI: 10.1021/jacs.6b02454] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.
Collapse
Affiliation(s)
- Peng Peng
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Michael Linseis
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|