1
|
Li H, Wan X, Cheng W, Wang C. Cs 2CO 3-Mediated Annulation of Cyclopropane-1,1-dicarbonitriles with o-Benzenediamines: Access to Substituted 2-Aminoquinoxalines. J Org Chem 2025; 90:5056-5061. [PMID: 40152175 DOI: 10.1021/acs.joc.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The Cs2CO3-mediated formal (4 + 2) cascade annulation strategy for the synthesis of 2-aminoquinoxalines has been developed using D-A cyclopropanes and o-benzenediamines as the substrates. The protocol provides an efficient method of accessing a broad range of 2-aminoquinoxaline derivatives in good to excellent yields with good functional-group tolerance.
Collapse
Affiliation(s)
- Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Xinyi Wan
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Wenzhe Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
2
|
Liu ZQ. What about the progress in the synthesis of flavonoid from 2020? Eur J Med Chem 2022; 243:114671. [DOI: 10.1016/j.ejmech.2022.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|
3
|
Liu ZQ. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! Food Chem 2022; 380:132143. [DOI: 10.1016/j.foodchem.2022.132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
|
4
|
Liu ZQ. Multicomponent Reactions for Integrating Multiple Functional Groups into an Antioxidant. CHEM REC 2020; 20:1516-1529. [PMID: 33063420 DOI: 10.1002/tcr.202000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
A large number of convincing evidences has revealed the correlation of the pathogeny of diseases with the oxidative damages of DNA, protein, biomembrane, and other biological species, while supplementation of antioxidants is demonstrated to be a promising way to avoid, at least, rectify the unbalance redox status in vivo. Although many endeavors have focused on synthesis of antioxidants, a main hurdle still hinders the wide usages of synthetic antioxidants because of low bioavailability and potential cytotoxicity. The search for antioxidants with multiple functional groups being recognized by different receptors becomes a much sought by researchers, and multicomponent reactions (MCRs) provide with powerful tools for the construction of multifunctional antioxidants. Presented herein is a personal account on the application of MCRs for the synthesis of multifunctional antioxidants, while radical-induced oxidation of DNA acts as the experimental system for evaluating antioxidative effect. Concretely, the Biginelli three-component reaction (3CR) affords such a dihydropyrimidine scaffold that the tautomerization between C=S and C-SH leads to antioxidative effect. The Povarov 3CR is able to integrate multiple antioxidative groups, i. e., ferrocenyl and -N(CH3 )2 , into a quinoline scaffold, while the Groebke 3CR provides with imidazo[1,2-a]pyridine skeleton for inhibiting DNA oxidation. Additionally, the Knoevenagel-related MCRs also become efficient strategies for achieving radical-scavengers. On the other hand, the Ugi 4CR and Passerini 3CR result in the dipeptide and α-acyloxycarboxamide, respectively, with the benefit for the integration of antioxidative features by aliphatic chains. Therefore, MCRs have emerged as efficient tools for integrating multiple antioxidative features into one molecule in order to meet with complicated requirements from various biological surroundings.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
5
|
Graebin CS, Ribeiro FV, Rogério KR, Kümmerle AE. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr Org Synth 2019; 16:855-899. [DOI: 10.2174/1570179416666190718153703] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 01/16/2023]
Abstract
Multicomponent reactions (MCRs) are composed of three or more reagents in which the final
product has all or most of the carbon atoms from its starting materials. These reactions represent, in the
medicinal chemistry context, great potential in the research for new bioactive compounds, since their products
can present great structural complexity. The aim of this review is to present the main multicomponent reactions
since the original report by Strecker in 1850 from nowadays, covering their evolution, highlighting their
significance in the discovery of new bioactive compounds. The use of MCRs is, indeed, a growing field of
interest in the synthesis of bioactive compounds and approved drugs, with several examples of commerciallyavailable
drugs that are (or can be) obtained through these protocols.
Collapse
Affiliation(s)
- Cedric S. Graebin
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Felipe V. Ribeiro
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - Arthur E. Kümmerle
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
6
|
Boltjes A, Dömling A. The Groebke-Blackburn-Bienaymé Reaction. EUROPEAN JOURNAL OF CHEMISTRY (PRINT) 2019; 2019:7007-7049. [PMID: 34012704 PMCID: PMC8130801 DOI: 10.1002/ejoc.201901124] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Imidazo[1,2-a]pyridine is a well-known scaffold in many marketed drugs, such as Zolpidem, Minodronic acid, Miroprofen and DS-1 and it also serves as a broadly applied pharmacophore in drug discovery. The scaffold revoked a wave of interest when Groebke, Blackburn and Bienaymé reported independently a new three component reaction resulting in compounds with the imidazo[1,2-a]-heterocycles as a core structure. During the course of two decades the Groebke Blackburn Bienaymé (GBB-3CR) reaction has emerged as a very important multicomponent reaction (MCR), resulting in over a hundred patents and a great number of publications in various fields of interest. Now two compounds derived from GBB-3CR chemistry received FDA approval. To celebrate the first 20 years of GBB-chemistry, we present an overview of the chemistry of the GBB-3CR, including an analysis of each of the three starting material classes, solvents and catalysts. Additionally, a list of patents and their applications and a more in-depth summary of the biological targets that were addressed, including structural biology analysis, is given.
Collapse
Affiliation(s)
- André Boltjes
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| |
Collapse
|
7
|
Liu ZQ. Anti-Oxidant in China: A Thirty-Year Journey. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1005-1024. [DOI: 10.1142/s0192415x19500514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anti-oxidant refers to such a kind of endogenous or exogenous compound that is able to retard or even prohibit in vivo or in vitro oxidation with only small amount being used. The study of anti-oxidants starts nearly 30 years ago, and the research on this topic in China almost begins simultaneously with that in the world. Gratifyingly, contributions on anti-oxidants from China researchers have rapidly increased in the recent decade as anti-oxidants have become a hot topic in biochemistry, pharmacology, food science, chemistry as well as other related disciplines. Anti-oxidants provide a specific viewpoint for clarifying pharmacological effects of Chinese medicinal herbs. For example, as a traditional Chinese medicinal herb, Panax ginseng C. A. Meyer is found to be a natural anti-oxidant resource. Meanwhile, some signaling pathways such as nuclear factor-[Formula: see text]B (NF-[Formula: see text]B), nuclear factor erythroid 2 related factor 2 (Nrf2), and Kelch-like ECH associated protein 1 (Keap1) are regarded to play an important role in anti-oxidant responses. These findings provide a substantial basis for understanding the pharmacological behaviors of Chinese medicinal herbs in view of regulating the aforementioned signaling pathways. Moreover, inhibition of reactive oxygen species (ROS) by supplementation of anti-oxidant becomes a popularly accepted idea in keeping health and treating diseases. Isolations of antio-xidative ingredients from medicinal herbs and foods lead to set up a large range of anti-oxidative compound libraries, and intake of anti-oxidants from foods may be the most efficient way for supplementing exogenous anti-oxidants. On the other hand, designing anti-oxidants with novel structures motivates organic and medicinal chemists to explore the structure–activity relationship, and then, to find novel structural features with anti-oxidative properties. Therefore, it is reasonable to believe that China researchers will donate more endeavors to obtain more achievements on anti-oxidants in the future.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
8
|
Liu ZQ. Enhancing Antioxidant Effect against Peroxyl Radical-Induced Oxidation of DNA: Linking with Ferrocene Moiety! CHEM REC 2019; 19:2385-2397. [PMID: 30946536 DOI: 10.1002/tcr.201800201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
As a major member in the family of reactive oxygen species, peroxyl radical is able to abstract hydrogen atom from 4-position of ribose, leading to the collapse of DNA strand. Thus, inhibiting oxidative stress with exogenous antioxidants acts as a promising strategy to protect the integrity of DNA structure and is thereby suggested to be a pathway against developments of related diseases. Ferrocene as an organometallic scaffold is widely applied in the design of organometallic drugs, and redox of Fe(II)/Fe(III) in ferrocene offers advantage for providing electron to radicals. Presented herein are our ongoing studies on ferrocene-appended antioxidants, including McMurry reaction applied to construct ferrocifen; Aldol condensation used to prepare ferrocenyl curcumin; Povarov reaction employed to prepare ferrocenyl quinoline; Biginelli reaction used to construct ferrocenyl dihydropyrimidine; Groebke reaction used to synthesize ferrocenyl imidazo[1,2-a]pyridine; and Passerini three-component reaction as well as Ugi four-component reaction applied to synthesize α-acyloxycarboxamide and bisamide, respectively. It is found that ferrocene moiety is able to enhance antioxidative effect of the aforementioned scaffolds even without the aid of phenolic hydroxyl group. The role of ferrocene in enhancing antioxidative effect can be attributable to trapping radicals, decreasing oxidative potential, and increasing the affinity toward DNA strand. Therefore, ferrocene is worthy to be taken into consideration in the design of drugs in relation to DNA oxidation.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, China
| |
Collapse
|
9
|
Rouhani M, Ramazani A. Perlite–SO3H nanoparticles: very efficient and reusable catalyst for three-component synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives under ultrasound irradiation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1426-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Karimian A. Synthesis of New Pyrimido[5′,4′:5,6][1,4]thiazino[2,3-b]quinoxaline Derivatives in One Step. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Azam Karimian
- Department of Chemistry, Faculty of Science; University of Gonabad; Gonabad Iran
| |
Collapse
|
11
|
In(OTf)3-HBF4Assisted Multicomponent Approach for One-Pot Synthesis of Pyrazolopyridinone Fused Imidazopyridines. ChemistrySelect 2016. [DOI: 10.1002/slct.201601133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Guchhait SK, Priyadarshani G, Gulghane NM. A reaction of 1,2-diamines and aldehydes with silyl cyanide as cyanide pronucleophile to access 2-aminopyrazines and 2-aminoquinoxalines. RSC Adv 2016. [DOI: 10.1039/c6ra12028h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new reaction of 1,2-diamines and aldehydes with TMSCN affords an efficient and diversity-feasible entry to 2-aminopyrazines and 2-aminoquinoxalines.
Collapse
Affiliation(s)
- Sankar K. Guchhait
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali)–160062
- India
| | - Garima Priyadarshani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali)–160062
- India
| | - Nikhil M. Gulghane
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali)–160062
- India
| |
Collapse
|