1
|
Ouyang X, Liu G, Guo L, Wu G, Xu P, Zhao YL, Tang H. A multifunctional flavoprotein monooxygenase HspB for hydroxylation and C-C cleavage of 6-hydroxy-3-succinoyl-pyridine. Appl Environ Microbiol 2024; 90:e0225523. [PMID: 38415602 PMCID: PMC10952382 DOI: 10.1128/aem.02255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from Pseudomonas putida S16 facilitates the hydroxylation and C-C bond cleavage of the pyridine ring in nicotine. However, the mechanism for biodegradation remains elusive. Here, we refined the crystal structure of HspB and elucidated the detailed mechanism behind the oxidative hydroxylation and C-C cleavage processes. Leveraging structural information about domains for binding the cofactor flavin adenine dinucleotide (FAD) and HSP substrate, we used molecular dynamics simulations and quantum/molecular mechanics calculations to demonstrate that the transfer of an oxygen atom from the reactive FAD peroxide species (C4a-hydroperoxyflavin) to the C3 atom in the HSP substrate constitutes a rate-limiting step, with a calculated reaction barrier of about 20 kcal/mol. Subsequently, the hydrogen atom was rebounded to the FAD cofactor, forming C4a-hydroxyflavin. The residue Cys218 then catalyzed the subsequent hydrolytic process of C-C cleavage. Our findings contribute to a deeper understanding of the versatile functions of flavoproteins in the natural transformation of pyridine and HspB in nicotine degradation.IMPORTANCEPseudomonas putida S16 plays a pivotal role in degrading nicotine, a toxic pyridine derivative that poses significant environmental challenges. This study highlights a key enzyme, HspB (6-hydroxy-3-succinoyl-pyridine monooxygenase), in breaking down nicotine through the pyrrolidine pathway. Utilizing dioxygen and a flavin adenine dinucleotide cofactor, HspB hydroxylates and cleaves the substrate's side chain. Structural analysis of the refined HspB crystal structure, combined with state-of-the-art computations, reveals its distinctive mechanism. The crucial function of Cys218 was never discovered in its homologous enzymes. Our findings not only deepen our understanding of bacterial nicotine degradation but also open avenues for applications in both environmental cleanup and pharmaceutical development.
Collapse
Affiliation(s)
- Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongquan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
3
|
Gómez S, Giovannini T, Cappelli C. Absorption spectra of xanthines in aqueous solution: a computational study. Phys Chem Chem Phys 2020; 22:5929-5941. [PMID: 32115599 DOI: 10.1039/c9cp05420k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a detailed computational analysis of the UV/Vis spectra of caffeine, paraxanthine and theophylline in aqueous solution. A hierarchy of solvation approaches for modeling the aqueous environment have been tested, ranging from the continuum model to the non-polarizable and polarizable quantum mechanical (QM)/molecular mechanics (MM) models, with and without the explicit inclusion of water molecules in the QM portion. The computed results are directly compared with the experimental data, thus highlighting the role of electrostatic, polarization and hydrogen boding solute-solvent interactions.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | | | | |
Collapse
|
4
|
Chen Z, Wu T, Yang X, Yue F, Fu F. An exploration of the solvent- and acid-catalyzed mutarotation mechanisms of lactose in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj03660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploration of the solvent- and acid-catalyzed mutarotation mechanisms of lactose to reveal the ease of the mutarotation varying with the acidity of the catalyst.
Collapse
Affiliation(s)
- Zeqin Chen
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu 610059
- People's Republic of China
- College of Chemistry and Chemical Engineering
| | - Tunyan Wu
- Chengdu Jinjiang Research Institute of Education Science
- Chengdu 610064
- People's Republic of China
| | - Xue Yang
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu 610059
- People's Republic of China
| | - Fen Yue
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu 610059
- People's Republic of China
| | - Fengping Fu
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- People's Republic of China
| |
Collapse
|
5
|
Özkılıç Y, Tüzün NŞ. Mechanism of Kynurenine 3-Monooxygenase-Catalyzed Hydroxylation Reaction: A Quantum Cluster Approach. J Phys Chem A 2019; 123:3149-3159. [PMID: 30888816 DOI: 10.1021/acs.jpca.8b11831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of the hydroxylation reaction between l-Kyn and model flavin adenine dinucleotide (FAD)-hydroperoxide was investigated via density functional theory (DFT) calculations in the absence and in the presence of the kynurenine 3-monooxygenase (KMO) enzyme by considering possible pathways that can lead to the product 3-hydroxykynurenine (3-HK). Crystal structure (pdb code: 5NAK )-based calculations involved a quantum cluster model in which the active site of the enzyme with the substrate l-Kyn was represented with 348 atoms. According to the deduced mechanism, KMO-catalyzed hydroxylation reaction takes place with four transformations. In the initial transition state, FAD delivers its peroxy hydroxyl to the l-Kyn ring, creating an sp3-hybridized carbon center. Then, the hydrogen on the hydroxyl moiety is immediately transferred back to the proximal oxygen that remained on FAD. These consequent transformations are in line with the somersault rearrangement previously described for similar enzymatic systems. The second step corresponds to a hydride shift from the sp3-hybridized carbon of the substrate ring to its adjacent carbon, producing the keto form of 3-HK. Then, keto-3-HK is transformed into its enol form (3-HK) with a water-assisted tautomerization. Lastly, FAD is oxidized with a water-assisted dehydration, which also involves 3-HK as a catalyst. In the proposed pathway, Asn54, Pro318, and a crystal water molecule were seen to play significant roles in the proton relays. The energies obtained via the cluster approach were calculated at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d,p) level with solvation (polarizable continuum model) and dispersion (DFT-D3(BJ)) corrections.
Collapse
Affiliation(s)
- Yılmaz Özkılıç
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| | - Nurcan Ş Tüzün
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| |
Collapse
|
6
|
Theoretical study on the metabolic mechanisms of levmepromazine by cytochrome P450. J Mol Model 2016; 22:237. [DOI: 10.1007/s00894-016-3107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/01/2016] [Indexed: 11/27/2022]
|
7
|
Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1943-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|