1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Shahbazi Nia S, Hossain MA, Ji G, Jonnalagadda SK, Obeng S, Rahman MA, Sifat AE, Nozohouri S, Blackwell C, Patel D, Thompson J, Runyon S, Hiranita T, McCurdy CR, McMahon L, Abbruscato TJ, Trippier PC, Neugebauer V, German NA. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem 2023; 254:115309. [PMID: 37054561 PMCID: PMC10634475 DOI: 10.1016/j.ejmech.2023.115309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel Obeng
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, 35229, USA
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Collin Blackwell
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jon Thompson
- Veterinary School of Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Scott Runyon
- Reserach Triangle Institute, Research Triangle Park, Durham, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
4
|
Yu K, Li M, Deng G, Liu C, Wang J, Liu Z, Zhang H, Yang X, Walsh PJ. An Efficient Route to Isochromene Derivatives via Cascade Radical Cyclization and Radical‐Radical Coupling. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kaili Yu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Minyan Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation University of Pennsylvania Philadelphia PA 19104-6323 United States
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Patrick J. Walsh
- Department of Chemistry, Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation University of Pennsylvania Philadelphia PA 19104-6323 United States
| |
Collapse
|
5
|
Adouama C, Budén ME, Guerra WD, Puiatti M, Joseph B, Barolo SM, Rossi RA, Médebielle M. Room-Temperature and Transition-Metal-Free Intramolecular α-Arylation of Ketones: A Mild Access to Tetracyclic Indoles and 7-Azaindoles. Org Lett 2019; 21:320-324. [PMID: 30576154 DOI: 10.1021/acs.orglett.8b03831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel approach for the synthesis of tetracyclic indoles and 7-azaindoles is reported. The strategy involves four steps, with a fast rt intramolecular α-arylation of ketones as key step. The reaction was inspected synthetically to achieve the synthesis of 11 novel tetracyclic structures with moderate to very good yields (39-85%). Theoretical combined with experimental studies led us to propose a probable polar mechanism (concerted SNAr).
Collapse
Affiliation(s)
- Chérif Adouama
- Univ Lyon, Université Lyon 1 , CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard , 69622 Villeurbanne Cedex , France
| | - María E Budén
- INFIQC, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , X5000HUA Córdoba , Argentina
| | - Walter D Guerra
- INFIQC, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , X5000HUA Córdoba , Argentina
| | - Marcelo Puiatti
- INFIQC, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , X5000HUA Córdoba , Argentina
| | - Benoît Joseph
- Univ Lyon, Université Lyon 1 , CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard , 69622 Villeurbanne Cedex , France
| | - Silvia M Barolo
- INFIQC, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , X5000HUA Córdoba , Argentina
| | - Roberto A Rossi
- INFIQC, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , X5000HUA Córdoba , Argentina
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1 , CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard , 69622 Villeurbanne Cedex , France
| |
Collapse
|
6
|
Lembke C, Stettin D, Speck F, Ueberschaar N, De Decker S, Vyverman W, Pohnert G. Attraction Pheromone of The Benthic Diatom Seminavis robusta: Studies on Structure-Activity Relationships. J Chem Ecol 2018. [PMID: 29536294 DOI: 10.1007/s10886-018-0944-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines.
Collapse
Affiliation(s)
- Christine Lembke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Daniel Stettin
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Franziska Speck
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Nico Ueberschaar
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Sam De Decker
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Gent, Krijgslaan 281 S8, 9000, Gent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Gent, Krijgslaan 281 S8, 9000, Gent, Belgium
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743, Jena, Germany. .,Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
7
|
Emery KJ, Tuttle T, Murphy JA. Evidence of single electron transfer from the enolate anion of an N,N'-dialkyldiketopiperazine additive in BHAS coupling reactions. Org Biomol Chem 2018; 15:8810-8819. [PMID: 29022630 DOI: 10.1039/c7ob02209c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A designed N,N'-dialkyldiketopiperazine (DKP) provides evidence for the role of DKP additives as initiators that act by electron transfer in base-induced homolytic aromatic substitution reactions, involving coupling of haloarenes to arenes.
Collapse
Affiliation(s)
- Katie J Emery
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | | | | |
Collapse
|
8
|
Meyer AU, Slanina T, Heckel A, König B. Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry 2017; 23:7900-7904. [DOI: 10.1002/chem.201701665] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas Uwe Meyer
- University of Regensburg; Faculty of Chemistry and Pharmacy; 93040 Regensburg Germany
| | - Tomáš Slanina
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Frankfurt am Main Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Frankfurt am Main Germany
| | - Burkhard König
- University of Regensburg; Faculty of Chemistry and Pharmacy; 93040 Regensburg Germany
| |
Collapse
|
9
|
Sattar M, Rathore V, Prasad CD, Kumar S. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp 3 C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles. Chem Asian J 2017; 12:734-743. [PMID: 28169505 DOI: 10.1002/asia.201601647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/03/2017] [Indexed: 01/11/2023]
Abstract
A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp3 C-H bond of oxindoles and sp2 C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp3 C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp3 C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.
Collapse
Affiliation(s)
- Moh Sattar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh, 462066, India
| | - Vandana Rathore
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh, 462066, India
| | - Ch Durga Prasad
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
10
|
Koziakov D, Jacobi von Wangelin A. Metal-free radical aromatic carbonylations mediated by weak bases. Org Biomol Chem 2017; 15:6715-6719. [DOI: 10.1039/c7ob01572k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A radical aromatic substitution mechanism initiated by very weak bases affects the synthesis of benzoates under pressurized CO atmosphere.
Collapse
Affiliation(s)
- Denis Koziakov
- Institute of Organic Chemistry
- University of Regensburg
- Germany
| | | |
Collapse
|
11
|
Emery KJ, Murphy JA, Tuttle T. Effect of solvent on radical cyclisation pathways: SRN1 vs. aryl–aryl bond forming mechanisms. Org Biomol Chem 2017; 15:920-927. [DOI: 10.1039/c6ob02684b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling product distribution in radical chemistry through solvent selection.
Collapse
Affiliation(s)
- Katie J. Emery
- WestCHEM
- Department of Pure and Applied Chemistry
- Thomas Graham Building
- University of Strathclyde
- Glasgow, G1 1XL
| | - John A. Murphy
- WestCHEM
- Department of Pure and Applied Chemistry
- Thomas Graham Building
- University of Strathclyde
- Glasgow, G1 1XL
| | - Tell Tuttle
- WestCHEM
- Department of Pure and Applied Chemistry
- Thomas Graham Building
- University of Strathclyde
- Glasgow, G1 1XL
| |
Collapse
|