1
|
Cao P, Fan G, Zhao X, Ren X, Wang Y, Wang Y, Gao Q. Regioselective synthesis of 3,4-diarylpyrimido[1,2- b]indazole derivatives enabled by iron-catalyzed ring-opening of styrene oxides. Chem Commun (Camb) 2024; 60:11742-11745. [PMID: 39319418 DOI: 10.1039/d4cc03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The first synthesis of 3,4-diarylpyrimido[1,2-b]indazole derivatives from 3-aminoindazoles has been realized. The FeCl3-catalyzed intermolecular epoxide ring-opening reaction altered the order of annulation, with the free primary NH2 groups in 3-aminoindazoles preferentially reacting with styrene oxides instead of aromatic aldehydes. This protocol is further highlighted by its broad substrate compatibility, high chemo- and regioselectivities, and the late-stage modifications of bioactive molecules. Without aromatic aldehydes, the synthesis of 3-aryl-4-acylpyrimido[1,2-b]indazole derivatives can also be accomplished using alternative reaction conditions.
Collapse
Affiliation(s)
- Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xiaofei Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xinyu Ren
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuru Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
2
|
Shen X, Yu ZC, Zhou Y, Wu YD, Wu AX. Divergent synthesis of pyrrolidone fused pyrimido[1,2- b]indazole through selective trapping of an enone intermediate by 1 H-indazol-3-amine. Chem Commun (Camb) 2024; 60:9781-9784. [PMID: 39158556 DOI: 10.1039/d4cc03483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
An oxidant-controlled divergent synthesis of a pyrrolidone fused pyrimido[1,2-b]indazole skeleton was developed through selective cyclization of an in situ generated enone intermediate and 1H-indazol-3-amine. The one-pot, metal-free process formed three C-N bonds, one C-C bond, and a tetrasubstituted carbon stereocenter containing a hydroxyl group. This method not only allowed for the synthesis of over 60 new pyrrolidone fused pyrimido[1,2-b]indazole derivatives, but was also compatible with the transformation of complex active molecules and the derivation of target products. Significantly, product 4q exhibited aggregation-induced emission (AIE) characteristics without any further modification.
Collapse
Affiliation(s)
- Xi Shen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
3
|
Ma LL, Zhou Y, Tang YX, Chen T, Wang ZH, Wu YD, Wang JG, Wu AX. I 2-DMSO-Mediated Construction of 2,3- and 2,4-Disubstituted Pyrimido[1,2- b]indazole Skeletons. J Org Chem 2024; 89:3941-3953. [PMID: 38421294 DOI: 10.1021/acs.joc.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic method for constructing 2,3- and 2,4-disubstituted pyrimidio[1,2-b]indazole skeletons through I2-DMSO-mediated and substrate-controlled regioselective [4 + 2] cyclization is reported. The reaction conditions are mild, its operation is simple, and the substrate scope is wide. More than 60 pyrimidio[1,2-b]indazole derivatives have been synthesized, providing a new methodology for constructing related molecules and potentially enriching bioactive-molecule libraries.
Collapse
Affiliation(s)
- Lin-Lin Ma
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zheng-Hao Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun-Gang Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
4
|
Tellal S, Jismy B, Hikem-Oukacha D, Abarbri M. Synthesis of Trifluoromethylated Pyrimido[1,2- b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SN Ar Reactions. Molecules 2023; 29:44. [PMID: 38202627 PMCID: PMC10779788 DOI: 10.3390/molecules29010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields.
Collapse
Affiliation(s)
- Sakina Tellal
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| | - Djamila Hikem-Oukacha
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| |
Collapse
|
5
|
Guo Y, Gao Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 2022; 20:7138-7150. [PMID: 36043318 DOI: 10.1039/d2ob01348g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-based heterocycles are an important class of structural scaffolds distributed in biologically active natural products, medicinal chemistry, and agrochemicals. Hence, there is increasing interest in the development of novel synthetic strategies for the construction of these privileged structural motifs. Recently, 3-aminoindazoles have emerged as versatile synthons participating in a variety of condensation annulation, denitrogenative transannulation and rearrangement ring expansion reactions, which provide efficient synthetic routes for the formation of nitrogen heterocycles. This review systematically highlights for the first time the most recent advances in 3-aminoindazoles to provide a deep understanding of using 3-aminoindazoles as versatile synthons in organic transformations for synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
6
|
Xu Z, Geng X, Cai Y, Wang L. A Straightforward Approach to Fluorinated Pyrimido[1,2- b]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. J Org Chem 2022; 87:6562-6572. [PMID: 35486919 DOI: 10.1021/acs.joc.2c00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and efficient three-component reaction with two C-N bonds and one C-F bond formation has been reported, which provides a straightforward route to a variety of fluorinated pyrimido[1,2-b]indazole derivatives. This transformation has the advantage of excellent functional group compatibility, including aliphatic and aromatic substituents enaminones. Moreover, metal and additives are not necessary for this reaction, which is of great significance for the synthesis and application of fluorinated heterocycles.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, PR China
| |
Collapse
|
7
|
Liu X, Zhou J, Lin J, Zhang Z, Wu S, He Q, Cao H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- b]indazole from 3-Aminoindazoles and Ynals. J Org Chem 2021; 86:9107-9116. [PMID: 34132097 DOI: 10.1021/acs.joc.1c01094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A straightforward and novel controllable site-selective construction of 2- and 4-substituted pyrimido[1,2-b]indazole from 3-aminoindazoles and ynals has been developed. The high regioselectivity of this reaction could be easily switched by converting different catalytic systems. In this way, a series of 2- and 4-substituted pyrimido[1,2-b]indazole derivatives were obtained in moderate to good yields. In addition, the photophysical properties of compound 3a prepared by the present method were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Zemin Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Suying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| |
Collapse
|
8
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
9
|
Wang QL, Zhou Q, Liao J, Chen Z, Xiong BQ, Deng GJ, Tang KW, Liu Y. Cu-Catalyzed Oxidative Dual Arylation of Active Alkenes: Preparation of Cyanoarylated Oxindoles through Denitrogenation of 3-Aminoindazoles. J Org Chem 2021; 86:2866-2875. [PMID: 33467855 DOI: 10.1021/acs.joc.0c02798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and mild Cu-catalyzed oxidative dual arylation of carbon-carbon double bonds in acrylamides with 3-aminoindazoles is proposed for the synthesis of cyanoarylated oxindoles. Notably, 3-aminoindazoles are employed as efficient arylating agents via the cleavage of two C-N bonds. This oxidative dual arylation of active alkenes involves a radical process and undergoes a sequence of 3-aminoindazole oxidation, two-C-N-bond cleavage, cyanoaryl radical addition, and intramolecular cyclization.
Collapse
Affiliation(s)
- Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.,Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia Liao
- Technical Center of Gongbei Customs, No. 501, Yinhua Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.,Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
10
|
Jismy B, El Qami A, Pišlar A, Frlan R, Kos J, Gobec S, Knez D, Abarbri M. Pyrimido[1,2-b]indazole derivatives: Selective inhibitors of human monoamine oxidase B with neuroprotective activity. Eur J Med Chem 2020; 209:112911. [PMID: 33071056 DOI: 10.1016/j.ejmech.2020.112911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Structurally diverse heterotricyclic compounds are recognized as monoamine oxidase (MAO) inhibitors and thus represent an appealing scaffold in development and optimization of novel MAO inhibitors. Herein we explored the chemical space of pyrimido[1,2-b]indazoles as MAO inhibitors by preparing a small library of (hetero)aryl derivatives. An efficient synthetic strategy was developed starting from commercially available 1H-indazol-3-amines, which were converted to various 3-bromoheterotricyclic derivatives and further functionalized via Suzuki-Miyaura coupling reaction. Derivatives 4a-t selectively inhibited human MAO-B isoform in a reversible and competitive manner as confirmed by kinetic experiments and docking studies. Selected derivatives were not cytotoxic to neuroblastoma SH-SY5Y cells. Moreover, analogue 4i protected human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced cell death, which confirms the applicability of the pyrimido[1,2-b]indazoles as potential antiparkinsonian agents.
Collapse
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour L'Energie (PCM2E), EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200, Tours, France
| | - Abdelkarim El Qami
- Département de Chimie Université Hassan II de Casablanca, Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22, BP 146, 28800, Mohammedia, Morocco
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour L'Energie (PCM2E), EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200, Tours, France.
| |
Collapse
|
11
|
Gao Q, Han X, Tong P, Zhang Z, Shen H, Guo Y, Bai S. Aerobic α,β-C(sp3)–H Bond Difunctionalization and C–N Bond Cleavage of Triethylamine: Difunctional Ammonium Iodide Enabling the Regioselective Synthesis of 4-Arylpyrimido[1,2-b]indazoles. Org Lett 2019; 21:6074-6078. [DOI: 10.1021/acs.orglett.9b02218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Peiyuan Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhiang Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Haotian Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
12
|
Shinde VV, Jung S. Succinyl-β-cyclodextrin–driven synthesis of a nitrogen-fused five-ring heterocycle using GBB-based [4 + 1] cycloaddition via supramolecular host–guest interactions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Wang G, Sun J, Wang K, Han J, Li H, Duan G, You G, Li F, Xia C. Palladium-catalyzed direct C–H nitration and intramolecular C–H functionalization for the synthesis of 3-nitro-1-(phenylsulfonyl)-1H-indazole derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00367c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various 3-nitro-1-(phenylsulfonyl)-1H-indazole derivatives have been obtained in moderate to high yields using palladium catalysis.
Collapse
Affiliation(s)
- Guodong Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Jian Sun
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Kai Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Junfen Han
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Hongshuang Li
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Guiyun Duan
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Guirong You
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Furong Li
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Chengcai Xia
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| |
Collapse
|
14
|
Zhou Y, Lou Y, Wang Y, Song Q. Oxidant-controlled divergent transformations of 3-aminoindazoles for the synthesis of pyrimido[1,2-b]-indazoles and aromatic nitrile-derived dithioacetals. Org Chem Front 2019. [DOI: 10.1039/c9qo00847k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An oxidant-controlled divergent reactivity of 3-aminoindazoles is presented, which enables the [3 + 3] annulation and C–H arylation of ketene dithioacetals in disparate pathways to assemble pyrimido[1,2-b]-indazoles and aromatic nitrile-derived dithioacetals.
Collapse
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- PR China
| | - Yixian Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- 310000 PR China
| | - Ya Wang
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- PR China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
15
|
Supramolecular aminocatalysis via inclusion complex: Amino-doped β-cyclodextrin as an efficient supramolecular catalyst for the synthesis of chromeno pyrimido[1,2-b]indazol in water. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Krishnammagari SK, Cho BG, Kim JT, Jeong YT. An efficient and solvent-free one-pot multi-component synthesis of novel highly substituted pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine-3-carbonitrile derivatives catalyzed by tetramethylguanidine. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1514053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Byung Gwon Cho
- Department of Image Science and Engineering, Pukyong National University, Busan, Republic of Korea
| | - Jong Tae Kim
- Department of Image Science and Engineering, Pukyong National University, Busan, Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
17
|
Zhou Y, Wang Y, Lou Y, Song Q. Oxidative Rearrangement of 3-Aminoindazoles for the Construction of 1,2,3-Benzotriazine-4(3H)-ones at Ambient Temperature. Org Lett 2018; 20:6494-6497. [DOI: 10.1021/acs.orglett.8b02813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P.R. China
| | - Ya Wang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P.R. China
| | - Yixian Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, P.R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
18
|
Kong W, Zhou Y, Song Q. Lewis-acid Promoted Chemoselective Condensation of 2-Aminobenzimidazoles or 3-Aminoindazoles with 3-Ethoxycyclobutanones to Construct Fused Nitrogen heterocycles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701641] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weiguang Kong
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| |
Collapse
|
19
|
Li L, Xu H, Dai L, Xi J, Gao L, Rong L. An efficient metal-free cascade process for the synthesis of 4-arylpyrimido[1,2-b]indazole-3-carbonitrile derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|