1
|
Murugappan S, Kuthe PV, Chandra Sekhar KVG, Sankaranarayanan M. Recent developments in thiochromene chemistry. Org Biomol Chem 2024. [PMID: 39026505 DOI: 10.1039/d4ob00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thiochromenes are versatile sulfur-containing heterocyclic compounds that have received considerable interest in drug discovery because of their ability to act as crucial building blocks for synthesizing bioactive compounds. In particular, these scaffolds have found utility in the design of anticancer, anti-HIV, antioxidant, and antimicrobial agents, among others. Despite their pharmacological potential, the synthesis of these scaffolds is less explored in contrast to their oxygen-containing counterparts. This review classifies the synthetic processes into Michael addition, cycloaddition, ring-opening, coupling, cyclization and Diels-Alder reactions, and others. Reaction mechanisms, circumstances, and important instances are thoroughly discussed in each area. For instance, chiral catalysts and substrates like mercaptobenzaldehyde and cinnamaldehyde are used in Michael addition processes to achieve excellent enantioselectivity. In cycloaddition reactions, readily available substrates such as thioisatins and alkynes achieve regioselectivity and product production. Thiochromenes are also synthesized by ring-opening reactions with epoxides or aziridines. These reactions demonstrate the importance of catalysts and solvents in reaction control, particularly palladium catalysts for aryl halides and thiol coupling processes. Another major class discussed is cyclization reactions with alkynyl thiols and alkynes under regulated temperature and pressure conditions to efficiently synthesize thiochromenes. With the use of chiral substrates and catalysts, Diels-Alder processes increase yields and selectivity and enhance the variety of thiochromene compounds. This review emphasizes the versatility of thiochromenes in drug discovery and consolidates the existing literature on thiochromenes, scrutinizing the gaps and opportunities for synthesizing novel thiochromene-containing lead molecules.
Collapse
Affiliation(s)
- Solai Murugappan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| | - Pranali Vijaykumar Kuthe
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India.
| |
Collapse
|
2
|
Na JG, Ji S, Kang H, Yeo WS. Preparation and evaluation of in situ photocleavable mass tags with facile mass variation for matrix-free laser desorption ionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38456738 DOI: 10.1039/d3ay02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Mass tags have been used for the precise identification, quantification, and characterization of macrobiomolecules and small organic molecules. Existing research has not yet demonstrated the preparation of a series of trityl-based photocleavable mass tags (PMTs) with similar structures but different molecular weights and mass variability. Herein, we introduce the design and synthesis of trityl-based in situ PMTs that generate heterolytic photocleavable cationic species upon laser irradiation. Mass variation of the PMTs was achieved via a simple conjugation reaction in the final step of synthesis. We prepared a series of PMTs with similar structures but different molecular weights and performed organic matrix-free laser desorption/ionization mass spectrometry (LDI MS) analysis. The practical applicability of the PMTs was evaluated by conjugating PMTs to oligonucleotides and utilizing them for detecting specific oligonucleotide targets combined with a mass signal amplification strategy. Quantitative aspects were also evaluated to verify the capability of the mass tags for multiplexed detection and the quantification of targets. The LDI MS analysis clearly demonstrated in situ heterolytic photocleavage that formed trityl cation peaks with high S/N ratios and high sensitivity. We strongly believe that the developed mass tags and LDI MS are useful alternatives to conventional signal transduction methods used for biosensors, such as surface plasmon resonance, electrochemical redox, and fluorescence.
Collapse
Affiliation(s)
- Jin-Gyu Na
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Seokhwan Ji
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Hyunook Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu M, Miao D, Qin S, Liu H, Bai Y. Mass tags-based mass spectrometric immunoassay and its bioanalysis applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Targeting out of range biomolecules: Chemical labeling strategies for qualitative and quantitative MALDI MS-based detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Stevens KG, McFarlane LO, Platts K, O'Brien-Simpson N, Li W, Blencowe A, Trim PJ, Pukala TL. Retro Diels-Alder Fragmentation of Fulvene-Maleimide Bioconjugates for Mass Spectrometric Detection of Biomolecules. Anal Chem 2021; 93:12204-12212. [PMID: 34461717 DOI: 10.1021/acs.analchem.1c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diels-Alder chemistry is a well-explored avenue for the synthesis of bioactive materials; however, its potential applications have recently expanded following the development of reactions that can be performed in buffered aqueous environments at low temperatures, including fulvene-maleimide [4 + 2] cycloadditions. In this study, we synthesized two novel amine-reactive fulvene linkers to demonstrate the application of this chemistry for generating mass spectrometry-cleavable labels ("mass tags"), which can be used for the labeling and detection of proteins. Successful conjugation of these linkers to maleimide-labeled peptides was observed at low temperatures in phosphate-buffered saline, allowing the non-destructive modification of proteins with such mass tags. The labile nature of fulvene-maleimide adducts in the gas phase also makes them suitable for both matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometric analysis. Unlike previous examples of MALDI mass tags, we show that fulvene-maleimide cycloaddition adducts fragment predictably upon gas-phase activation without the need for bulky photocleavable groups. Further exploration of this chemistry could therefore lead to new approaches for mass spectrometry-based bioassays.
Collapse
Affiliation(s)
- Katherine G Stevens
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Lewis O McFarlane
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Paul J Trim
- Proteomics, Metabolomics and MS Imaging, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Tara L Pukala
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
7
|
Stevens KG, Pukala TL. Conjugating immunoassays to mass spectrometry: Solutions to contemporary challenges in clinical diagnostics. Trends Analyt Chem 2020; 132:116064. [PMID: 33046944 PMCID: PMC7539833 DOI: 10.1016/j.trac.2020.116064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developments in immunoassays and mass spectrometry have independently influenced diagnostic technology. However, both techniques possess unique strengths and limitations, which define their ability to meet evolving requirements for faster, more affordable and more accurate clinical tests. In response, hybrid techniques, which combine the accessibility and ease-of-use of immunoassays with the sensitivity, high throughput and multiplexing capabilities of mass spectrometry are continually being explored. Developments in antibody conjugation methodology have expanded the role of these biomolecules to applications outside of conventional colorimetric assays and histology. Furthermore, the range of different mass spectrometry ionisation and analysis technologies has enabled its successful adaptation as a detection method for numerous clinically relevant immunological assays. Several recent examples of combined mass spectrometry-immunoassay techniques demonstrate the potential of these methods as improved diagnostic tests for several important human diseases. The present challenges are to continue technological advancements in mass spectrometry instrumentation and develop improved bioconjugation methods, which can overcome their existing limitations and demonstrate the clinical significance of these hybrid approaches.
Collapse
|
8
|
Han J, Huang X, Liu H, Wang J, Xiong C, Nie Z. Correction: Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry. Chem Sci 2020; 11:1176. [PMID: 34084375 PMCID: PMC8146070 DOI: 10.1039/c9sc90270h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Correction for ‘Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry’ by Jing Han et al., Chem. Sci., 2019, 10, 10958–10962.
Collapse
Affiliation(s)
- Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of the Chinese Academy of Sciences Beijing 100049 China.,National Center for Mass Spectrometry in Beijing Beijing 100049 China
| |
Collapse
|
9
|
Han J, Huang X, Liu H, Wang J, Xiong C, Nie Z. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry. Chem Sci 2019; 10:10958-10962. [PMID: 32190253 PMCID: PMC7066667 DOI: 10.1039/c9sc03912k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
A single-cell MS approach for multiplexed glycan detection to investigate the relationship between drug resistance and glycans at a single-cell level and quantify multiple glycans, overcoming the limit of low ionization efficiency of glycans.
Glycans binding on the cell surface through glycosylation play a key role in controlling various cellular processes, and glycan analysis at a single-cell level is necessary to study cellular heterogeneity and diagnose diseases in the early stage. Herein, we synthesized a series of laser cleavable probes, which could sensitively detect glycans on single cells and tissues by laser desorption ionization mass spectrometry (LDI-MS). This multiplexed and quantitative glycan detection was applied to evaluate the alterations of four types of glycans on breast cancer cells and drug-resistant cancer cells at a single-cell level, indicating that drug resistance may be related to the upregulation of glycan with a β-d-galactoside (Galβ) group and Neu5Aca2-6Gal(NAc)-R. Moreover, the glycan spatial distribution in cancerous and paracancerous human tissues was also demonstrated by MS imaging, showing that glycans are overexpressed in cancerous tissues. Therefore, this single-cell MS approach exhibits promise for application in studying glycan functions which are essential for clinical biomarker discovery and diagnosis of related diseases.
Collapse
Affiliation(s)
- Jing Han
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ; .,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ; .,University of the Chinese Academy of Sciences , Beijing 100049 , China.,National Center for Mass Spectrometry in Beijing , Beijing 100049 , China
| |
Collapse
|
10
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
11
|
Mandal A, Singha M, Addy PS, Basak A. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques. MASS SPECTROMETRY REVIEWS 2019; 38:3-21. [PMID: 29029360 DOI: 10.1002/mas.21545] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS.
Collapse
Affiliation(s)
- Arundhoti Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Monisha Singha
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | | | - Amit Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|