1
|
Fatima A, Shahzadi A, Majeed A, Al-Rawi SS, Ibrahim AH, Iqbal MA, Qaleel F. Green Catalysis: Water as a Sustainable Medium in Organocatalyzed Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8451-8479. [PMID: 40119848 DOI: 10.1021/acs.langmuir.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
The use of organocatalysts has increased significantly in recent years due to their tremendous applications in green solvents. Thus, using water as a solvent has evolved as a critical factor. Organocatalysts are efficient and sustainable agents for promoting chemical reactions in water. The literature has been extensively reviewed, and the use of various organocatalysts for three fundamental C-C bond-forming processes─the Aldol, Michael, and Mannich reactions in aqueous media─have been compiled in this study. Organocatalysts can overcome the limitations of conventional organic solvents by achieving high reaction rates and regioselectivity in water. This Review highlights the advantages of organocatalysts in aqueous media for these key reactions. It discusses the principles behind designing effective organocatalysts, focusing on their impact on selectivity, sustainability, and reaction efficiency. This study also summarizes the most significant advancements in sustainable organic reactions over the past decade.
Collapse
Affiliation(s)
- Anfal Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sawsan S Al-Rawi
- Biology Education Department, Tishk International University, 44001 Erbil, Iraq
| | - Ahmad H Ibrahim
- Pharmacy Department, Tishk International University, 44001 Erbil, Iraq
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Faisal Qaleel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Patra S, Katayev D. Facile Access to Terminal Nitroalkanes via Anti-Markovnikov Hydronitration and Hydronitroalkylation of Alkenes Using Photoredox Catalysis. Chemistry 2024; 30:e202403654. [PMID: 39366916 DOI: 10.1002/chem.202403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The evolution of catalysis and functional group transfer reagents play a significant role in the development of anti-Markovnikov alkene hydrofunctionalization reactions, facilitating the access to value-added molecules. We herein report the first rational design of a modular intermolecular anti-Markovnikov hydronitration of alkenes, enabling the direct synthesis of terminal nitroalkanes under visible light-mediated photoredox catalysis. By employing the redox-active organic nitrating reagent N-nitrosuccinimide, the produced nitryl radicals, in the presence of an olefin and a hydrogen atom transfer (HAT) mediator, lead to an anti-Markovnikov addition with complete regioselectivity. Furthermore, we present results demonstrating the use of this catalytic system for chain expansion via anti-Markovnikov addition, utilizing substituted bromonitroalkanes as commercially available reagents. These transformations effectively address a gap in synthetic chemistry, enabling the direct synthesis of nitroalkanes from a variety of unactivated olefins in both complex molecules and unfunctionalized commodity chemicals.
Collapse
Affiliation(s)
- Subrata Patra
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern (UniBe), Freiestrasse 3, 3012, Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern (UniBe), Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Weng R, Zhou Y, Zhang Y, Feng X, Liu X. Catalytic asymmetric Michael and Nef-type sequential reaction of nitroolefin with azlactone to construct oxazole-fused succinimide. Chem Commun (Camb) 2024; 60:13384-13387. [PMID: 39450603 DOI: 10.1039/d4cc04858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A series of oxazole-fused succinimides bearing vicinal quaternary carbon centers were synthesized. This process takes place between nitroolefins and azlactones in the presence of a bifunctional chiral guanidine-sulfonamide organocatalyst, followed by a Nef-type transformation under the treatment of DMAP/Ac2O. Several control experiments were conducted to propose the mechanism.
Collapse
Affiliation(s)
- Rui Weng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yaqin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Osawa A, Balasubramanian M, Nakao Y. Reductive Homologation of Nitroalkanes via Denitrative Aminoalkylation. Org Lett 2024; 26:9046-9050. [PMID: 39413283 DOI: 10.1021/acs.orglett.4c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We present the reductive homologation of nitroalkanes through the utilization of the denitrative aminoalkylation reaction. This transformation is accomplished by the radical-radical coupling of alkyl radicals derived from nitroalkanes and persistent aminoalkyl radicals. By capitalizing on the diverse α-functionalization of nitroalkanes, α,β-multifunctionalized amines can be readily accessed.
Collapse
Affiliation(s)
- Ayumi Osawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Maanashaa Balasubramanian
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
6
|
Wang B, Liu J, Li T, Jin H, Zhang L. Asymmetric synthesis of ( R)-baclofen and (3 S,4 S)-tetflupyrolimet via "on water" organocatalytic addition reactions: a tip on catalyst screening. Org Biomol Chem 2024; 22:1146-1151. [PMID: 38214555 DOI: 10.1039/d3ob02009f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This work demonstrates asymmetric synthesis of the GABA derivative (R)-baclofen and a new herbicidal mode-of-action inhibitor (3S,4S)-tetflupyrolimet featuring low loading (0.5 mol%) organocatalytic addition reactions of dithiomalonates to nitrostyrenes under "on water" conditions. Importantly, we observed that increasing the hydrophobicity of the catalyst does not guarantee improved catalytic performance under "on water" conditions and the trends in the catalytic efficiency of different HBD catalysts under "on water" conditions (with hydrophobic additives) align more closely with those observed in pure hydrophobic organic solvents. These findings propose a valuable tip for screening organocatalysts in developing asymmetric hydrogen-bonding catalysis under "on water" conditions.
Collapse
Affiliation(s)
- Bingfu Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 110031, People's Republic of China.
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Jian Liu
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Tianxing Li
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Hui Jin
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| | - Lixin Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 110031, People's Republic of China.
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China.
| |
Collapse
|
7
|
Malik A, Sharma PR, Sharma RK. α-Methylbenzylamine Functionalized Crown-Ether-Appended Calix[4]arene Phase Transfer Catalyst for Enantioselective Henry Reaction. Chemistry 2023; 29:e202302638. [PMID: 37850687 DOI: 10.1002/chem.202302638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
In this letter, we designed a highly selective α-methylbenzylamine functionalized crown-ether-appended calix[4]arene derived phase transfer catalyst for asymmetric nitroaldol reaction to provide the desired nitroaldol adducts in high yields (up to 99 % yield) with good to excellent enantioselectivities (up to 99.8 % ee).
Collapse
Affiliation(s)
- Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| |
Collapse
|
8
|
Priya BV, Rao DHS, Chatterjee A, Padhi SK. Hydroxynitrile lyase engineering for promiscuous asymmetric Henry reaction with enhanced conversion, enantioselectivity and catalytic efficiency. Chem Commun (Camb) 2023; 59:12274-12277. [PMID: 37750925 DOI: 10.1039/d3cc02837b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) engineering has uncovered variants that showed up to 12-fold improved catalytic efficiency than the wild-type towards asymmetric Henry reaction. The AtHNL variants have displayed excellent enantioselectivity, up to >99%, and higher conversion in the synthesis of 13 different (R)-β-nitroalcohols from their corresponding aldehydes. Using cell lysates of Y14M/F179W, we demonstrated a preparative scale synthesis of (R)-1-(4-methoxyphenyl)-2-nitroethanol, a tembamide chiral intermediate, in >99% ee and 52% yield.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| |
Collapse
|
9
|
Russo C, Leech MC, Walsh JM, Higham JI, Giannessi L, Lambert E, Kiaku C, Poole DL, Mason J, Goodall CAI, Devo P, Giustiniano M, Radi M, Lam K. eHydrogenation: Hydrogen-free Electrochemical Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309563. [PMID: 37540528 DOI: 10.1002/anie.202309563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
Hydrogenation reactions are staple transformations commonly used across scientific fields to synthesise pharmaceuticals, natural products, and various functional materials. However, the vast majority of these reactions require the use of a toxic and costly catalyst leading to unpractical, hazardous and often functionally limited conditions. Herein, we report a new, general, practical, efficient, mild and high-yielding hydrogen-free electrochemical method for the reduction of alkene, alkyne, nitro and azido groups. Finally, this method has been applied to deuterium labelling.
Collapse
Affiliation(s)
- Camilla Russo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Joe I Higham
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Lisa Giannessi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Emmanuelle Lambert
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Charles A I Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Marco Radi
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
10
|
Yang PJ, Chai Z. Catalytic enantioselective desymmetrization of meso-aziridines. Org Biomol Chem 2023; 21:465-478. [PMID: 36508282 DOI: 10.1039/d2ob01935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a type of readily available small strained-ring heterocycle, meso-aziridines may undergo catalytic desymmetrizing transformations to empower the rapid construction of diverse nitrogen-containing structures bearing contiguous stereocenters, which have great relevance in natural product synthesis, drug development and the design and synthesis of chiral catalysts/ligands for asymmetric catalysis. This review outlines the advances achieved in the catalytic asymmetric desymmetrization of meso aziridines and highlights some promising avenues for further work in this realm.
Collapse
Affiliation(s)
- Pei-Jun Yang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China.,MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| |
Collapse
|
11
|
Smajlagic I, Johnston JN, Dudding T. Secondary Orbital Effect Involving Fluorine is Responsible for Substrate-Controlled Diastereodivergence in the Catalyzed syn-aza-Henry Reaction of α-Fluoronitroalkanes. Chemistry 2023; 29:e202204066. [PMID: 36607705 DOI: 10.1002/chem.202204066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The fluorine atom is a powerful, yet enigmatic influence on chemical reactions. True to form, fluorine was recently discovered to effect diastereodivergence in an enantioselective aza-Henry reaction, resulting in a very rare case of syn-β-amino nitroalkane products. More bewildering was the observation of an apparent hierarchy of substituents within this substrate-controlled behavior: Ph>F>alkyl. These cases have now been examined comprehensively by computational methods, including both non-fluorinated and α-fluoro nitronate additions to aldimines catalyzed by a chiral bis(amidine) [BAM] proton complex. This study revealed the network of non-covalent interactions that dictate anti- (α-aryl) versus syn-selectivity (α-alkyl) using α-fluoronitronate nucleophiles, and an underlying secondary orbital interaction between fluorine and the activated azomethine.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Institute of Chemical Biology, Vanderbilt University Nashville, Tennessee, 37235, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| |
Collapse
|
12
|
The features of the Michael reaction in ([1,2,4]triazolo[4,3-a][1,3,5]triazin-5-yl)dinitromethanides. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Sengupta S, Pabbaraja S, Mehta G. Domino Reactions through Recursive Anionic Cascades: The Advantageous Use of Nitronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
14
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
15
|
Ushakov PY, Ioffe SL, Sukhorukov AY. Regio- and diastereoselective access to densely functionalized ketones via the Boekelheide rearrangement of isoxazoline N-oxides. Org Biomol Chem 2022; 20:5624-5637. [PMID: 35796681 DOI: 10.1039/d2ob00787h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, the classical "isoxazoline route" toward aldols involving the [3 + 2]-cycloaddition of nitrile oxide to alkenes and hydrogenolysis of the oxime group was revisited. To avoid regioselectivity issues, [4 + 1]-annulation of nitroalkenes with sulfonium ylides was used to construct the isoxazoline ring bearing an N-oxide moiety. Subsequent deoxygenative C-H functionalization using the Boekelheide rearrangement and hydrogenolysis of the isoxazoline ring afforded α'-acyloxy-substituted aldols, which are difficult to access both by the classical aldol reaction and the "isoxazoline route". The products are formed in good to high overall yields and as single diastereomers in most cases. The synthetic use of these aldols was showcased by their smooth transformation into diastereomerically pure triols and a 2,3-diaryl-4-hydroxy-substituted tetrahydrofuran derivative, which is structurally related to cinncassin B.
Collapse
Affiliation(s)
- Pavel Yu Ushakov
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| |
Collapse
|
16
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
17
|
Farrar EHE, Grayson MN. Machine learning and semi-empirical calculations: a synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction. Chem Sci 2022; 13:7594-7603. [PMID: 35872815 PMCID: PMC9242013 DOI: 10.1039/d2sc02925a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Modern QM modelling methods, such as DFT, have provided detailed mechanistic insights into countless reactions. However, their computational cost inhibits their ability to rapidly screen large numbers of substrates and catalysts in reaction discovery. For a C-C bond forming nitro-Michael addition, we introduce a synergistic semi-empirical quantum mechanical (SQM) and machine learning (ML) approach that allows the prediction of DFT-quality reaction barriers in minutes, even on a standard laptop using widely available modelling software. Mean absolute errors (MAEs) are obtained that are below the accepted chemical accuracy threshold of 1 kcal mol-1 and substantially better than SQM methods without ML correction (5.71 kcal mol-1). Predictive power is shown to hold when the ML models are applied to an unseen set of compounds from the toxicology literature. Mechanistic insight is also achieved via the generation of full SQM transition state (TS) structures which are found to be very good approximations for the DFT-level geometries, revealing important steric interactions in some TSs. This combination of speed, accuracy, and mechanistic insight is unprecedented; current ML barrier models compromise on at least one of these important criteria.
Collapse
Affiliation(s)
- Elliot H E Farrar
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Matthew N Grayson
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
18
|
Hayashi Y, Hattori S, Koshino S. Asymmetric flow reactions catalyzed by immobilized diphenylprolinol alkyl ether: Michael reaction and domino reactions. Chem Asian J 2022; 17:e202200314. [DOI: 10.1002/asia.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yujiro Hayashi
- Tohoku University Department of Chemistry 6-3, Aramaki-AzaAobaAobaku 980-8578 Sendai JAPAN
| | - Shusuke Hattori
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| | - Seitaro Koshino
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| |
Collapse
|
19
|
Bing JA, Schley ND, Johnston JN. Fluorine-induced diastereodivergence discovered in an equally rare enantioselective syn-aza-Henry reaction. Chem Sci 2022; 13:2614-2623. [PMID: 35356677 PMCID: PMC8890141 DOI: 10.1039/d1sc05910f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
Attention to the aza-Henry reaction, particularly over the past two decades, has resulted in a wide range of effective catalysts for the enantio- and diastereoselective versions, driven by the versatility of the β-amino nitroalkane products as precursors to secondary amines and vic-diamines. Despite this broad effort, syn-diastereoselective variants are exceedingly rare. We have discovered a subset of α-fluoro nitroalkane additions that are characterized by an unusual crossover in diastereoselection, often delivering the products with high selectivities. We report here a rigorous comparative analysis of non-fluorinated and α-fluoro nitroalkanes in their additions to azomethines. Both homogeneous and heterogeneous catalysis were applied to probe the possibility that this phenomenon might be more widely operative in the enantioselective additions of fluorine-substituted carbon nucleophiles. A complete correlation within four categories is described that uncovered a clear trend, while revealing a dramatic and distinct reversal of diastereoselection that would normally go undetected.
Collapse
Affiliation(s)
- Jade A Bing
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| |
Collapse
|
20
|
|
21
|
Zhao C, Li T, Khan I, Zhang YJ. Pd‐Catalyzed Chemoselective Bis‐Allylic Substitution of Allylic Dicarbonates with Arylated Nitromethanes: A Route to 1,2‐Oxazine N‐Oxides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Tao Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Ijaz Khan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yong Jian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
22
|
Yoon S, Lee S, Nam SH, Lee H, Lee Y. Synthesis of N-substituted quaternary carbon centers through KO t-Bu-catalyzed aza-Michael addition of pyrazoles to cyclic enones. Org Biomol Chem 2022; 20:8313-8322. [DOI: 10.1039/d2ob01634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study reports an effective and mild protocol for the construction of N-substituted quaternary carbon centers via the KOt-Bu-catalyzed aza-Michael addition of pyrazoles with β-substituted cyclic enones.
Collapse
Affiliation(s)
- Subin Yoon
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sungbin Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seung Hyun Nam
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyejeong Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
23
|
Chalyk BA, Khutorianskyi AV, Vashchenko BV, Danyleiko K, Grynyova A, Osipova AO, Kozytskiy A, Syniuchenko D, Tsymbaliuk A, Gavrilenko KS, Biitseva AV, Volochnyuk DM, Komarov IV, Grygorenko OO. Reductive Recyclization of sp 3-Enriched Functionalized Isoxazolines into α-Hydroxy Lactams. J Org Chem 2021; 87:1001-1018. [PMID: 34843235 DOI: 10.1021/acs.joc.1c02301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis (up to a 200 g scale) of 3-hydroxypyrrolidin-2-ones bearing alkyl substituents or functional groups at the C-5 position is described. The reaction sequence started from 1,3-dipolar cycloaddition of in situ generated nitrile oxides with (meth-)acrylates into 3-substituted isoxazoline-5-carboxylates. The catalytic hydrogenolysis of the isoxazoline N-O bond was optimal upon using H2 (1 atm) at rt, with the following order of the catalyst activity: Pd-C > Pd(OH)2-C > Pt-C. The reactions with Pt-C were more selective for the synthesis of pyrrolidones, while Pd-C provided the fastest conversion rates. The stirring efficiency had a positive impact on conversion rather than elevated temperatures (up to 40 °C) or pressure (up to 50 atm). The diastereoselectivity was governed mainly by steric factors, with a dr of 1:1 to 3:1 (cis- and trans-isomers could be separated). Higher homologues (isoxazolinylacetates and -propanoates) were suitable for the synthesis of 6- or 7-substituted 4-hydroxypiperidones and 5-hydroxyazepanones, respectively. The proposed methods are tolerant to functional groups, including CF3 (but not CHF2 or CH2Cl), ester, and most N-Boc-protected amines. The utility of hydroxyl groups in lactams was shown by functional group transformations. Hydrogenolysis of C(5)-functionalized isoxazolines, bearing trimethylsilyl, phosphonate, or sulfone groups, was also studied to demonstrate limitations.
Collapse
Affiliation(s)
- Bohdan A Chalyk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine
| | - Andrii V Khutorianskyi
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kyrylo Danyleiko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anastasiia Grynyova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Anastasiia O Osipova
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Darya Syniuchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anton Tsymbaliuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Konstantin S Gavrilenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Angelina V Biitseva
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
24
|
Oka Y, Tsuzuki S, Moriyama K. Chiral anthranilic pyrrolidine as custom-made amine catalyst for enantioselective Michael reaction of nitroalkenes with carbonyl compounds. Chem Commun (Camb) 2021; 57:11457-11460. [PMID: 34632990 DOI: 10.1039/d1cc04453b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A chiral anthranilic pyrrolidine catalyst as a custom-made amine-catalyst was developed for the enantio- and diastereo selective Michael reaction of nitroalkenes with carbonyl compounds. In particular, a peptide-like catalyst in which an α-amino acid is attached to the anthranilic acid skeleton induced the high stereoselectivity of the reaction with aldehydes. Studies of the reaction mechanism indicated that the catalyst exhibits a divergent stereocontrol in the reaction, namely, steric control by a 2-substituted group on the catalyst and hydrogen-bonding control by a carboxylic acid group on the catalyst.
Collapse
Affiliation(s)
- Yukari Oka
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
25
|
Zlotin SG, Churakov AM, Egorov MP, Fershtat LL, Klenov MS, Kuchurov IV, Makhova NN, Smirnov GA, Tomilov YV, Tartakovsky VA. Advanced energetic materials: novel strategies and versatile applications. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Kovalevsky RA, Kucherenko AS, Korlyukov AA, Zlotin SG. Asymmetric Conjugate Addition of 3‐Hydroxychromen‐4‐Ones to Electron‐Deficient Olefins Catalyzed by Recyclable C
2
‐Symmetric Squaramide. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ruslan A. Kovalevsky
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
- M.V. Lomonosov Moscow State University Department of Chemistry Leninskie gory 1–3 119234 Moscow Russian Federation
| | - Alexander S. Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
27
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
28
|
Novel C2-symmetric phenylglycine derivatives as organocatalysts of the Michael reaction between nitroalkenes and ketones. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Parandeh-Khoozani N, Moradian M. Synthesis of nitroaldols through the Henry reaction using a copper(II)–Schiff base complex anchored on magnetite nanoparticles as a heterogeneous nanocatalyst. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1921748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Mohsen Moradian
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
30
|
Das T, Mohapatra S, Mishra NP, Nayak S, Raiguru BP. Recent Advances in Organocatalytic Asymmetric Michael Addition Reactions to α, β‐Unsaturated Nitroolefins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapaswini Das
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Nilima P. Mishra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| |
Collapse
|
31
|
Maule I, Razzetti G, Restelli A, Palmieri A, Colombo C, Ballini R. Thermal Stability Evaluation of Nitroalkanes with Differential Scanning Calorimetry. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivano Maule
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | - Gabriele Razzetti
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | | | - Alessandro Palmieri
- Green Chemistry Group-School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cinzia Colombo
- Dipharma Francis S.r.l., Via Bissone, 5, Baranzate, 20021 Milano, Italy
| | - Roberto Ballini
- Green Chemistry Group-School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
32
|
Mahato CK, Mukherjee S, Kundu M, Vallapure VP, Pramanik A. Asymmetric 1,4-Michael Addition in Aqueous Medium Using Hydrophobic Chiral Organocatalysts. J Org Chem 2021; 86:5213-5226. [PMID: 33764066 DOI: 10.1021/acs.joc.1c00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic transformations exclusively in water as an environmentally friendly and safe medium have drawn significant interest in the recent years. Moreover, transition metal-free synthesis of enantiopure molecules in water will have a great deal of attention as the system will mimic the natural enzymatic reactions. In this work, a new set of proline-derived hydrophobic organocatalysts have been synthesized and utilized for asymmetric Michael reactions in water as the sole reaction medium. Among the various catalysts screened, the catalyst 1 is indeed efficient for stereoselective 1,4-conjugated Michael additions (dr: >97:3, ee up to >99.9%) resulting in high chemical yields (up to 95%) in a very short reaction time (1 h) at room temperature. This methodology provides a robust, green, and convenient protocol and can thus be an important addition to the arsenal of the asymmetric Michael addition reaction. Upon successful implementation, the present strategy also led to the formation of an optically active octahydroindole, the key component found in many natural products.
Collapse
Affiliation(s)
- Chandan K Mahato
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India.,Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sayan Mukherjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India
| | - Virbhadra P Vallapure
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India
| | - Animesh Pramanik
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
33
|
Kostenko AA, Bykova KA, Kucherenko AS, Komogortsev AN, Lichitsky BV, Zlotin SG. 2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions. Org Biomol Chem 2021; 19:1780-1786. [PMID: 33543186 DOI: 10.1039/d0ob02283g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Nitroallylic carbonates, a new class of "green" 1,3-bielectrophilic reagents for organic synthesis and catalysis, have been prepared. The bifunctional tertiary amine-catalyzed asymmetric [3 + 3] annulations of cyclic enols with these reagents occur much faster than corresponding reactions with 2-nitroallylic esters and produce no acidic by-products poisoning the catalyst. Furthermore, 2-nitroallylic carbonates enable highly enantioselective one-pot synthesis of a variety of fused dihydropyrane derivatives from available precursors bearing pharmacophoric fragments.
Collapse
Affiliation(s)
- Alexey A Kostenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Kseniya A Bykova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Alexander S Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Sergei G Zlotin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| |
Collapse
|
34
|
Yu SJ, Zhu YN, Ye JL, Huang PQ. A versatile approach to functionalized cyclic ketones bearing quaternary carbon stereocenters via organocatalytic asymmetric conjugate addition of nitroalkanes to cyclic β-substituted α,β-Enones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Plumet J. 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides under "Non-Conventional" Conditions: Green Solvents, Irradiation, and Continuous Flow. Chempluschem 2021; 85:2252-2271. [PMID: 33044044 DOI: 10.1002/cplu.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Indexed: 01/15/2023]
Abstract
The 1,3-dipolar cycloaddition reactions (DCs) of nitrile oxides (NOs) to alkenes and alkynes are useful methods for the synthesis of 2-isoxazolines and isoxazoles respectively, which are important classes of heterocyclic compounds in organic and medicinal chemistry. Most of these reactions are carried out in organic solvents and under thermal activation. Nevertheless the use of supercritical carbon dioxide (scCO2 ) and ionic liquids (Ils) as alternative solvents and the application of microwave (MW) and ultrasound (US) as alternative activation procedures have evident advantages from the "Green Chemistry" point of view. The critical discussion on the applications of these "unconventional" activation methods and reaction conditions in the 1,3-DCs of NOs is the objective of the present Review.
Collapse
Affiliation(s)
- Joaquín Plumet
- Department of Organic Chemistry. Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
36
|
Lupidi G, Palmieri A, Petrini M. Synthesis of Nitro Alcohols by Riboflavin Promoted Tandem Nef‐Henry Reactions on Nitroalkanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology Chemistry Division University of Camerino Via S. Agostino 1 62032 Camerino
| | - Alessandro Palmieri
- School of Science and Technology Chemistry Division University of Camerino Via S. Agostino 1 62032 Camerino
| | - Marino Petrini
- School of Science and Technology Chemistry Division University of Camerino Via S. Agostino 1 62032 Camerino
| |
Collapse
|
37
|
García-Urricelqui A, de Cózar A, Mielgo A, Palomo C. Probing α-Amino Aldehydes as Weakly Acidic Pronucleophiles: Direct Access to Quaternary α-Amino Aldehydes by an Enantioselective Michael Addition Catalyzed by Brønsted Bases. Chemistry 2021; 27:2483-2492. [PMID: 33034390 DOI: 10.1002/chem.202004468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/20/2022]
Abstract
The high tendency of α-amino aldehydes to undergo 1,2-additions and their relatively low stability under basic conditions have largely prevented their use as pronucleophiles in the realm of asymmetric catalysis, particularly for the production of quaternary α-amino aldehydes. Herein, it is demonstrated that the chemistry of α-amino aldehydes may be expanded beyond these limits by documenting the first direct α-alkylation of α-branched α-amino aldehydes with nitroolefins. The reaction produces densely functionalized products bearing up to two, quaternary and tertiary, vicinal stereocenters with high diastereo- and enantioselectivity. DFT modeling leads to the proposal that intramolecular hydrogen bonding between the NH group and the carbonyl oxygen atom in the starting α-amino aldehyde is key for reaction stereocontrol.
Collapse
Affiliation(s)
- Ane García-Urricelqui
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| |
Collapse
|
38
|
Giunta D, Arras A, Peluso P, Solinas M. Synthesis of “Click BOX” ligands and preliminary results on their application in the asymmetric copper catalysed Henry reaction of o-methoxybenzaldehyde. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Luo S, Huang X, Guo L, Huang P. Catalytic Asymmetric Total Synthesis of Macrocyclic Marine Natural Product (–)‐Haliclonin A
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shi‐Peng Luo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology Changzhou Jiangsu 213001 China
| | - Xiong‐Zhi Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lian‐Dong Guo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
40
|
Sukhorukov AY. Editorial: Nitro Compounds as Versatile Building Blocks for the Synthesis of Pharmaceutically Relevant Substances. Front Chem 2020; 8:595246. [PMID: 33195101 PMCID: PMC7604505 DOI: 10.3389/fchem.2020.595246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia.,Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Moscow, Russia
| |
Collapse
|
41
|
Sun X, Meng F, Su Q, Luo K, Ju P, Liu Z, Li X, Li G, Wu Q. New catalytically active conjugated microporous polymer bearing ordered salen-Cu and porphyrin moieties for Henry reaction in aqueous solution. Dalton Trans 2020; 49:13582-13587. [PMID: 32970055 DOI: 10.1039/d0dt02686g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A catalytically active conjugated microporous polymer (SP-CMP-Cu) was facilely constructed with condensation polymerization of salen-Cu (salen = N,N'-bis(3-tertbutyl-5-formylsalicylidene) ethylenediamine) and pyrrole. The as-synthesized SP-CMP-Cu was completely characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis. The morphological features of SP-CMP-Cu were revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to the N2 adsorption/desorption isotherm, the Brunauer-Emmett-Teller (BET) surface area of SP-CMP-Cu was calculated to be 252 m2 g-1 with a total pore volume of 0.178 cm3 g-1. SP-CMP-Cu exhibited an outstanding catalytic performance for the Henry reaction in aqueous solutions with excellent conversion and good selectivity. Moreover, SP-CMP-Cu can be reused for up to five consecutive runs without any significant loss in its catalytic efficiency.
Collapse
Affiliation(s)
- Xiaoman Sun
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fanyu Meng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qing Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Kexin Luo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Pengyao Ju
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ziqian Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaodong Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiaolin Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
42
|
Han W, Oriyama T. Asymmetric Michael Addition of Isobutyraldehyde to Nitroolefins Using an α,α-Diphenyl-(S)-prolinol-Derived Chiral Diamine Catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Han
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
43
|
Abstract
Chemistry of nitro groups and nitro compounds has long been intensively studied. Despite their long history, new reactions and methodologies are still being found today. This is due to the diverse reactivity of the nitro group. The importance of nitro chemistry will continue to increase in the future in terms of elaborate synthesis. In this article, we will take a walk through the recent advances in nitro chemistry that have been made in past decades.
Collapse
Affiliation(s)
- Nagatoshi Nishiwaki
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
44
|
Pelipko VV, Kuritsynа MA, Baichurin RI, Makarenko SV. Alkyl 3-Nitroacrylates in the Reactions with Heterocyclic CH Acids. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pribulová B, Kováčová H, Jakubčinová J, Baráth M, Blahušiaková A, Petrušová M, Petruš L. Nitroalkene ring closure route to carbon-linked scaffolds for mimicking α-d-mannopyranosyl natural linkage. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Hensienne R, Cusson JP, Chénard É, Hanessian S. Catalytic Lewis and Brønsted acid syn-diastereoselective benzylic substitutions of α-hydroxy- β-nitro- and α-hydroxy- β-azido-alkyl arenes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of alkyl and alkenyl p-methoxy arenes containing α,β-disubstituted diamino and amino alcohol groups were synthesized from β-nitro and β-azido benzylic alcohols in the presence of AuCl3 as catalyst. The formation of predominantly syn-disubstituted products were rationalized on the basis of mechanistic considerations and transition state models relying on A1,3-allylic strain. The products could have utility in the design of medicinally relevant compounds and as chiral ligands for asymmetric catalysis. A new synthesis of (+)-sertraline (Zoloft) was achieved.
Collapse
Affiliation(s)
- Raphaël Hensienne
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-Philippe Cusson
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Étienne Chénard
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
Sukhorukov AY. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction. Front Chem 2020; 8:215. [PMID: 32351929 PMCID: PMC7174751 DOI: 10.3389/fchem.2020.00215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Reductive amination of carbonyl compounds with primary amines is a well-established synthetic methodology for the selective production of unsymmetrically substituted secondary and tertiary amines. From the industrial and green chemistry perspective, it is attractive to combine reductive amination with the synthesis of primary amines in a single one-pot catalytic process. In this regard, nitro compounds, which are readily available and inexpensive feedstocks, received much attention as convenient precursors to primary amines in such processes. Although the direct reductive coupling of nitro compounds with aldehydes/ketones to give secondary and tertiary amines has been known since the 1940's, due to the development of highly efficient and selective non-noble metal-based catalysts a breakthrough in this area was made in the last decade. In this short overview, recent progress in the methodology of the reductive amination with nitro compounds is summarized together with applications to the synthesis of bioactive amines and heterocycles. Remaining challenges in this field are also analyzed.
Collapse
Affiliation(s)
- Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia.,Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Moscow, Russia
| |
Collapse
|
48
|
Zhu FP, Guo X, Zhang FM, Zhang XM, Wang H, Tu YQ. Construction of Polyfunctionalized 6-5-5 Fused Tricyclic Carbocycles via One-Pot Sequential Semipinacol Rearrangement/Michael Addition/Henry Reaction. Org Lett 2020; 22:2076-2080. [PMID: 32096637 DOI: 10.1021/acs.orglett.0c00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel one-pot semipinacol rearrangement/Michael addition/Henry reaction of vinylogous α-ketols with nitroolefins has been achieved through the promotion of two Lewis acids, namely, TMSOTf and TiCl4, at temperatures between 0 and -78 °C. A range of synthetically challenging polyfunctionalized 6-5-5 and 7-5-5 fused tricyclic carbocycles bearing up to five continuous stereocenters, including one quaternary carbon center, are rapidly constructed in moderate to good yields with good to high diastereoselectivities in most cases.
Collapse
Affiliation(s)
- Fu-Ping Zhu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Guo
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Baydaş Y, Dertli E, Şahin E. Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1729809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yasemin Baydaş
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Engin Şahin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey
| |
Collapse
|
50
|
Faisca Phillips AM, Guedes da Silva MFC, Pombeiro AJL. The Stereoselective Nitro-Mannich Reaction in the Synthesis of Active Pharmaceutical Ingredients and Other Biologically Active Compounds. Front Chem 2020; 8:30. [PMID: 32047742 PMCID: PMC6997535 DOI: 10.3389/fchem.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
The nitro-Mannich (aza-Henry) reaction, in which a nitroalkane and an imine react to form a β-nitroamine, is a versatile tool for target-oriented synthesis. Although the first stereoselective reaction was developed only 20 years ago, and enantioselective and diastereoselective versions for the synthesis of non-racemic compounds soon after, there are nowadays a variety of reliable methods which can be used for the synthesis of APIs and other biologically active substances. Hence many anticancer drugs, antivirals, antimicrobials, enzyme inhibitors and many more substances, containing C-N bonds, have been synthesized using this reaction. Several transition metal complexes and organocatalysts were shown to be compatible with the presence of a wide range of functional groups in these molecules, and very high levels of asymmetric induction have been achieved in some cases. The reaction has also been applied in cascade processes. The structural diversity of the products, ranging from simple heterocycles or azabicycles to complex alkaloids, iminosugars, amino acids or diamino acids and phosphonates, shows the versatility of the nitro-Mannich reaction and its potential for future developments.
Collapse
Affiliation(s)
| | | | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|