Sun XS, Diao XY, Dong XQ, Wang CJ. Base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction: efficient access to δ-carboline derivatives.
Chem Sci 2022;
13:10448-10454. [PMID:
36277643 PMCID:
PMC9473522 DOI:
10.1039/d2sc03166c]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
A serendipitous and highly efficient approach for the construction of a variety of δ-carboline derivatives was developed through base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction of N-2,2,2-trifluoroethylisatin ketoimine esters with alkynes in good to high yields with excellent regio-/chemoselectivity control. Moreover, a reasonable reaction pathway was proposed, which was in accordance with the prepared reaction intermediate and control experiment results. The δ-carboline product could be easily converted into a new chiral Py-box-type ligand through simple synthetic transformations. This salient strategy featured the advantages of metal-free conditions, excellent regio-/chemoselectivity, good to high yields, and outstanding substrate tolerance. Importantly, the potential application of these fascinating δ-carboline derivative products is well demonstrated in the recognition of ferric ions.
A serendipitous and efficient approach to access various δ-carbolines was developed through base-promoted cascade β-F-elimination/electrocyclization/Diels–Alder/retro-Diels–Alder reaction in good to high yields with excellent regio/chemoselectivity.![]()
Collapse