1
|
Shepard CP, Emehiser RG, Karmakar S, Hrdlicka PJ. Factors Impacting Invader-Mediated Recognition of Double-Stranded DNA. Molecules 2022; 28:127. [PMID: 36615321 PMCID: PMC9821881 DOI: 10.3390/molecules28010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The development of chemically modified oligonucleotides enabling robust, sequence-unrestricted recognition of complementary chromosomal DNA regions has been an aspirational goal for scientists for many decades. While several groove-binding or strand-invading probes have been developed towards this end, most enable recognition of DNA only under limited conditions (e.g., homopurine or short mixed-sequence targets, low ionic strength, fully modified probe strands). Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of intercalator-functionalized nucleotides, are predisposed to recognize DNA targets due to their labile nature and high affinity towards complementary DNA. Here, we set out to gain further insight into the design parameters that impact the thermal denaturation properties and binding affinities of Invader probes. Towards this end, ten Invader probes were designed, and their biophysical properties and binding to model DNA hairpins and chromosomal DNA targets were studied. A Spearman's rank-order correlation analysis of various parameters was then performed. Densely modified Invader probes were found to result in efficient recognition of chromosomal DNA targets with excellent binding specificity in the context of denaturing or non-denaturing fluorescence in situ hybridization (FISH) experiments. The insight gained from the initial phase of this study informed subsequent probe optimization, which yielded constructs displaying improved recognition of chromosomal DNA targets. The findings from this study will facilitate the design of efficient Invader probes for applications in the life sciences.
Collapse
|
2
|
Emehiser RG, Dhuri K, Shepard C, Karmakar S, Bahal R, Hrdlicka PJ. Serine-γPNA, Invader probes, and chimeras thereof: three probe chemistries that enable sequence-unrestricted recognition of double-stranded DNA. Org Biomol Chem 2022; 20:8714-8724. [PMID: 36285843 PMCID: PMC9707317 DOI: 10.1039/d2ob01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Three probe chemistries are evaluated with respect to thermal denaturation temperatures, UV-Vis and fluorescence characteristics, recognition of complementary and mismatched DNA hairpin targets, and recognition of chromosomal DNA targets in the context of non-denaturing fluorescence in situ hybridization (nd-FISH) experiments: (i) serine-γPNAs (SγPNAs), i.e., single-stranded peptide nucleic acid (PNA) probes that are modified at the γ-position with (R)-hydroxymethyl moieties, (ii) Invader probes, i.e., DNA duplexes modified with +1 interstrand zippers of 2'-O-(pyren-1-yl)methyl-RNA monomers, a molecular arrangement that results in a violation of the neighbor exclusion principle, and (iii) double-stranded chimeric SγPNAs:Invader probes, i.e., duplexes between complementary SγPNA and Invader strands, which are destabilized due to the poor compatibility between intercalators and PNA:DNA duplexes. Invader probes resulted in efficient, highly specific, albeit comparatively slow recognition of the model DNA hairpin targets. Recognition was equally efficient and faster with the single-stranded SγPNA probes but far less specific, whilst the double-stranded chimeric SγPNAs:Invader probes displayed recognition characteristics that were intermediate of the parent probes. All three probe chemistries demonstrated the capacity to target chromosomal DNA in nd-FISH experiments, with Invader probes resulting in the most favorable and consistent characteristics (signals in >90% of interphase nuclei against a low background and no signal in negative control experiments). These probe chemistries constitute valuable additions to the molecular toolbox needed for DNA-targeting applications.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- Pharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA
| | - Caroline Shepard
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | - Raman Bahal
- Pharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA
| | | |
Collapse
|
3
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
4
|
Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from biological applications such as gene targeting, to engineering applications such as probe and sensor developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is hard to achieve with other artificial nucleic acids and is expected to be a promising method to recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of PNA invasion.
Collapse
|
5
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
6
|
Jirakittiwut N, Patipong T, Cheiwchanchamnangij T, Waditee-Sirisattha R, Vilaivan T, Praneenararat T. Paper-based sensor from pyrrolidinyl peptide nucleic acid for the efficient detection of Bacillus cereus. Anal Bioanal Chem 2021; 413:6661-6669. [PMID: 34476520 DOI: 10.1007/s00216-021-03633-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022]
Abstract
Bacillus cereus is one of the most common foodborne pathogens found in various kinds of staple foods such as rice and wheat. A rapid and accurate detection method for this pathogen is highly desirable for the sustainable production of relevant food products. While several classical and molecular-based detection methods are available for the identification of B. cereus, they suffered one or more limitations such as the requirement for a tedious and time-consuming process, less than ideal specificity, and the lack of portability. Herein, we developed the first paper-based sensing device that exhibits high species specificity with sufficiently low limit of detection for the visual detection of specific DNA sequences of B. cereus. The success is attributed to the strategic planning of fabrication in various dimensions including thorough bioinformatics search for highly specific genes, the use of the pyrrolidinyl peptide nucleic acid (PNA) probe whose selectivity advantage is well documented, and an effective PNA immobilization and DNA-binding visualization method with an internal cross-checking system for validating the results. Testing in rice matrices indicates that the sensor is capable of detecting and distinguishing B. cereus from other bacterial species. Hence, this paper-based sensor has potential to be adopted as a practical means to detect B. cereus in food industries.
Collapse
Affiliation(s)
- Nuttapon Jirakittiwut
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.,The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.,Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Tanutcha Patipong
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | | | - Rungaroon Waditee-Sirisattha
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.,Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand. .,The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Huang Y, Zhao S, Zhang W, Duan Q, Yan Q, Fu H, Zhong L, Yi G. Multifunctional electrochemical biosensor with "tetrahedral tripods" assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA. RSC Adv 2021; 11:20046-20056. [PMID: 35479883 PMCID: PMC9033681 DOI: 10.1039/d1ra02424h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/23/2021] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids are genetic materials in the human body that play important roles in storing, copying, and transmitting genetic information. Abnormal nucleic acid sequences, base mutations, and genetic changes often lead to cancer and other diseases. Meanwhile, methylated DNA is one of the main epigenetic modifications, which is considered to be an excellent biomarker in the early detection, prognosis, and treatment of cancers. Therefore, a multifunctional electrochemical biosensor was constructed with sturdy tetrahedral tripods, which assisted multiple tandem hairpins through base complementary pairing and effective ultra-sensitive detection of targets (DNA, microRNA, and methylated DNA). In the experiments, experimental conditions were optimized, and different DNA concentrations in serum were detected to verify the sensitivity of the biosensor and the feasibility of this protocol. In addition, microRNA and DNA methylation were detected through different designs of tetrahedral tripods (TTs) that capture probes to prove the superiority of this scheme. A sturdy pyramid structure of TTs extremely enhanced the capture efficiency of targets. The targets triggered the one-step isothermal multi-tandem amplification reaction by incubating multiple hairpin assemblies. To our knowledge, a combination of two parts, which greatly reduced background interference and decreased non-specific substance interference, has appeared for the first time in this paper. Moreover, the load area of electrochemical substances was significantly increased than that in previous studies. This greatly increased the detection range and detection limit of targets. The electrochemical signal responses were generated in freely diffusing hexaammineruthenium(iii) chloride (RuHex). RuHex could adhere to the DNA phosphate backbone by a powerful electrostatic attraction, causing increased current responses. Schematic illustration of the fabricated electrochemical biosensor. TTs assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA.![]()
Collapse
Affiliation(s)
- Yuqi Huang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Shuhui Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Wenxiu Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qiuyue Duan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qi Yan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Hu Fu
- Clinical Laboratory of Chengdu First People's Hospital Chengdu 610000 PR China
| | - Liang Zhong
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| |
Collapse
|
8
|
Das A, Pradhan B. Evolution of peptide nucleic acid with modifications of its backbone and application in biotechnology. Chem Biol Drug Des 2020; 97:865-892. [PMID: 33314595 DOI: 10.1111/cbdd.13815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 01/23/2023]
Abstract
Peptide nucleic acids (PNAs) are getting prodigious interest currently in the biomedical and diagnostic field as an extremely powerful tool because of their potentiality to hybridize with natural nucleic acids. Although PNA has strong affinity and sequence specificity to DNA/RNA, there is a considerable ongoing effort to further enhance their special chemical and biological properties for potential application in numerous fields, notably in the field of therapeutics. The toolbox for backbone modified PNAs synthesis has been extended substantially in recent decades, providing a more efficient synthesis of peptides with numerous scaffolds and modifications. This paper reviews the various strategies that have been developed so far for the modification of the PNA backbone, challenging the search for new PNA systems with improved chemical and physical properties lacking in the original aegPNA backbone. The various practical issues and limitations of different PNA systems are also summarized. The focus of this review is on the evolution of PNA by its backbone modification to improve the cellular uptake, sequence specificity, and compatibility of PNA to bind to DNA/RNA. Finally, an insight was also gained into major applications of backbone modified PNAs for the development of biosensors.
Collapse
Affiliation(s)
- Anuradha Das
- National Institute of Science Education and Research Bhubaneswar (HBNI), Bhubaneswar, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
9
|
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020; 30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Wu T, Chen W, Yang Z, Tan H, Wang J, Xiao X, Li M, Zhao M. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res 2018; 46:e24. [PMID: 29190359 PMCID: PMC5829738 DOI: 10.1093/nar/gkx1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
Sensitive detection of the single nucleotide variants in cell-free DNA (cfDNA) may provide great opportunity for minimally invasive diagnosis and prognosis of cancer and other related diseases. Here, we demonstrate a facile new strategy for quantitative measurement of cfDNA mutations at low abundance in the cancer patients' plasma samples. The method takes advantage of a novel property of lambda exonuclease which effectively digests a 5'-fluorophore modified dsDNA with a 2-nt overhang structure and sensitively responds to the presence of mismatched base pairs in the duplex. It achieves a limit of detection as low as 0.02% (percentage of the mutant type) for BRAFV600E mutation, NRASQ61R mutation and three types of EGFR mutations (G719S, T790M and L858R). The method enabled identification of BRAFV600E and EGFRL858R mutations in the plasma of different cancer patients within only 3.5 h. Moreover, the terminal structure-dependent reaction greatly simplifies the probe design and reduces the cost, and the assay only requires a regular real-time PCR machine. This new method may serve as a practical tool for quantitative measurement of low-abundance mutations in clinical samples for providing genetic mutation information with prognostic or therapeutic implications.
Collapse
Affiliation(s)
- Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haocheng Tan
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjin Xiao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Nim-Anussornkul D, Vilaivan T. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid bearing a base discriminating fluorescence nucleobase 8-(pyrene-1-yl)-ethynyladenine. Bioorg Med Chem 2017; 25:6388-6397. [PMID: 29111370 DOI: 10.1016/j.bmc.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
A combination of fluorophore and nucleobase through a π-conjugated rigid linker integrates the base pairing and the fluorescence change into a single event. Such base discriminating fluorophore can change its fluorescence as a direct response to the base pairing event and therefore have advantages over tethered labels or base surrogates lacking the hydrogen-bonding ability. 8-(Pyrene-1-yl)ethynyl-adenine (APyE) has been extensively used as fluorescence labels in DNA and LNA, but it showed little discrimination between different nucleobases. Herein we investigated the synthesis, base pairing ability and optical properties of APyE in pyrrolidinyl peptide nucleic acid - a DNA mimic that shows much stronger affinity and specificity towards DNA than natural oligonucleotides. The APyE in PNA pairs specifically with thymine in the DNA strand, and resulted in 1.5-5.2-fold enhanced and blue-shifted fluorescence emission. Fluorescence quenching was observed in the presence of mismatched base or abasic site directly opposite to the APyE. The behavior of APyE in acpcPNA is distinctively different from DNA whereby a fluorescence was increased selectively upon duplex formation with complementary DNA and therefore emphasizing the unique advantages of using PNA as alternative oligonucleotide probes. Applications as color-shifting probe for detection of trinucleotide repeats in DNA were demonstrated, and the performance of the probe was further improved by combination with reduced graphene oxide as an external nanoquencher.
Collapse
Affiliation(s)
- Duangrat Nim-Anussornkul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|