1
|
Nucleobase-Derived Nitrones: Synthesis and Antioxidant and Neuroprotective Activities in an In Vitro Model of Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23063411. [PMID: 35328832 PMCID: PMC8955307 DOI: 10.3390/ijms23063411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a–i. The neuroprotective properties of nitrones, 9a–i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a–i, have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-L-cysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1–6 μM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50′s ≈ 2–4 μM) and antioxidant (EC50′s ≈ 0.4–3.5 μM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mono-nitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.
Collapse
|
2
|
Efremova MM, Makarova AA, Novikov AS, Kryukova MA, Kuznetsov MA, Molchanov AP. Regio- and stereoselective (3 + 2)-cycloaddition reactions of nitrones with cyclic allenes. Org Biomol Chem 2021; 19:9773-9784. [PMID: 34730596 DOI: 10.1039/d1ob01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An effective approach to access functionalized 2H-cyclonona(deca)[d]isoxazoles and 15-oxo-3,10-methanobenzo[b][1]azacyclododecines has been developed by the reaction of N-aryl-C,C-bis(methoxycarbonyl)nitrones with cyclonona(deca)-1,2-dienes in a one-pot fashion. The reaction of N-aryl-C-(phenylcarbamoyl)nitrones with these allenes proceeds strictly regioselectively giving the mixtures of diastereomeric isoxazolidines containing a double bond at the C4-position of the isoxazolidine ring. The quantum chemical calculations show that the regioselectivity of these reactions is in good agreement with the reactivity indices of the considered compounds.
Collapse
Affiliation(s)
- Mariia M Efremova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Anastasia A Makarova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Mariya A Kryukova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Mikhail A Kuznetsov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Alexander P Molchanov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| |
Collapse
|
3
|
El Mansouri AE, Maatallah M, Ait Benhassou H, Moumen A, Mehdi A, Snoeck R, Andrei G, Zahouily M, Lazrek HB. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1088-1107. [PMID: 32397827 DOI: 10.1080/15257770.2020.1761982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report the synthetic strategies and characterization of some novel 1,3,4-oxadiazole homonucleoside analogs that are relevant to potential antitumor and cytotoxic activities. The structure of all compounds is confirmed using various spectroscopic methods such as 1H-NMR, 13C-NMR, HRMS, and FTIR. These compounds were evaluated against three human cancer cell lines (MCF-7, SKBR3, and HL60 Cell Line). Preliminary investigations showed that the cytotoxic activity was markedly dependent on the nucleobase. Introduction of 5-Iodouracil 4g and theobromine 6b proved to be extremely beneficial even they were more potent than the reference drug (DOX). Also, the synthesized compounds were tested for their antiviral activities against the human varicella-zoster virus (VZV). The product 4h was (6-azauracil derivative) more potent to the reference (acyclovir) against the deficient TK - VZV strain by about 2-fold. Finally, molecular docking suggested that the anticancer activities of compounds 6b and 4g mediated by inhibiting dual proteins EGFR/HER2 with low micromolar inhibition constant Ki range. The 1,3,4-oxadiazole homonucleosides showed a strong affinity to binding sites of target proteins by forming H-bond, carbon-hydrogen bond, Pi-anion, Pi-sulfur, Pi-sigma, alkyl, and Pi-alkyl interactions.
Collapse
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco.,Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Mohamed Maatallah
- Laboratoire de Chimie théorique, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | | | | | - Ahmad Mehdi
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Montpellier cedex 5, France
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco.,MAScIR Medical Biotechnology, Rabat, Morocco
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
4
|
Piotrowska DG, Głowacka IE, Schols D, Snoeck R, Andrei G, Gotkowska J. Novel Isoxazolidine and γ-Lactam Analogues of Homonucleosides. Molecules 2019; 24:E4014. [PMID: 31698778 PMCID: PMC6891762 DOI: 10.3390/molecules24224014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
Homonucleoside analogues cis-16 and trans-17 having a (5-methoxycarbonyl)isoxazolidine framework were synthesized via the 1,3-dipolar cycloaddition of nucleobase-derived nitrones with methyl acrylate. Hydrogenolysis of the isoxazolidines containing thymine, dihydrouracil, theophylline and adenine moieties efficiently led to the formation of the respective γ-lactam analogues. γ-Lactam analogues having 5-bromouracil and 5-chlorouracil fragments were synthesized by treatment of uracil-containing γ-lactams with NBS and NCS. Isoxazolidine and γ-lactam analogues of homonucleosides obtained herein were evaluated for activity against a broad range of DNA and RNA viruses. None of the compounds that were tested exhibited antiviral or cytotoxic activity at concentrations up to 100 µM. The cytostatic activities of all compounds toward nine cancerous cell lines was tested. γ-Lactams trans-15e (Cl-Ura) and cis-15h (Theo) appeared the most active toward pancreatic adenocarcinoma cells (Capan-1), showing IC50 values 21.5 and 18.2 µM, respectively. Isoxazolidine cis-15e (Cl-Ura) inhibited the proliferation of colorectal carcinoma (HCT-116).
Collapse
Affiliation(s)
- Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (I.E.G.); (J.G.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (I.E.G.); (J.G.)
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Joanna Gotkowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (I.E.G.); (J.G.)
| |
Collapse
|
5
|
Romeo R, Iannazzo D, Veltri L, Gabriele B, Macchi B, Frezza C, Marino-Merlo F, Giofrè SV. Pyrimidine 2,4-Diones in the Design of New HIV RT Inhibitors. Molecules 2019; 24:E1718. [PMID: 31052607 PMCID: PMC6539630 DOI: 10.3390/molecules24091718] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
The pyrimidine nucleus is a versatile core in the development of antiretroviral agents. On this basis, a series of pyrimidine-2,4-diones linked to an isoxazolidine nucleus have been synthesized and tested as nucleoside analogs, endowed with potential anti-HIV (human immunodeficiency virus) activity. Compounds 6a-c, characterized by the presence of an ethereal group at C-3, show HIV reverse transcriptase (RT) inhibitor activity in the nanomolar range as well as HIV-infection inhibitor activity in the low micromolar with no toxicity. In the same context, compound 7b shows only a negligible inhibition of RT HIV.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Via S.S. Annunziata, 98168 Messina, Italy.
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada Di Dio, 98166 Messina, Italy.
| | - Lucia Veltri
- Dipartimento di Chimica e tecnologie chimiche, Università della Calabria,Via P. Bucci 12/C, 87036 Arcavacata di Rende, Italy.
| | - Bartolo Gabriele
- Dipartimento di Chimica e tecnologie chimiche, Università della Calabria,Via P. Bucci 12/C, 87036 Arcavacata di Rende, Italy.
| | - Beatrice Macchi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", 00133 Roma, Italy.
| | - Caterina Frezza
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", 00133 Roma, Italy.
| | | | - Salvatore V Giofrè
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Via S.S. Annunziata, 98168 Messina, Italy.
| |
Collapse
|