1
|
Shaikh JY, Bhowmick A, Chatterjee A, Laha D, Bankar OS, Bhat RG. Palladium Catalyzed C3-(sp 2)-H Alkenylation of Pyrroles via a Benzothiazole Directing Group: A Direct Access to Organic Thermally Activated Delayed Fluorescence Materials. J Org Chem 2025; 90:59-74. [PMID: 39723926 DOI: 10.1021/acs.joc.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A Pd (II)-catalyzed direct C3-(sp2)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2-N-alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism. This convenient protocol proved to be practical to access thermally activated delayed fluorescence materials (TADF). These molecules proved to be blue-emitting TADF materials (∼ms lifetime). A detailed and systematic investigation has been carried out to study the photophysical properties, and this has been further validated by the time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Javed Y Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
2
|
Borrego E, Caballero A, Pérez PJ. Micellar Catalysis as a Tool for C-H Bond Functionalization toward C-C Bond Formation. Organometallics 2022; 41:3084-3098. [PMID: 37810590 PMCID: PMC10552653 DOI: 10.1021/acs.organomet.2c00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Micelles generated upon dissolving surfactants in water can be employed as nanovessels for catalytic transformations, in the so-called micellar catalysis methodology. This review is focused on the use of micellar catalysis in the context of the catalytic functionalization of carbon-hydrogen bonds. The micelles accumulate catalyst and reactants in their inner volume in such a high local concentration that kinetics are favored. The consequence is that, in most cases, processes that in conventional organic solvents require high temperatures and long reaction times are achieved in milder conditions when micellar catalysis is employed.
Collapse
Affiliation(s)
- Elena Borrego
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Ana Caballero
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| |
Collapse
|
3
|
Yogananda Chary D, Aashritha K, Sridhar B, Subba Reddy BV. Rh(III)-catalyzed ortho-C–H bond functionalization of 2-arylquinoxalines with vinyl arenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Sunny S, John SE, Shankaraiah N. Exploration of C‐H Activation Strategies in Construction of Functionalized 2‐Aryl Benzoazoles: A Decisive Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steeva Sunny
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
5
|
Luo P, Gan F, Lin J, Ding Q. Recent Advances in the Synthesis and Applications of 2-Arylbenzothiazoles. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review firstly covers the applications of 2-arylbenzothiazoles as amyloid imaging agents, antitumor agents, and organic luminescent materials. Then we review the recent advances in the synthesis of 2-arylbenzothiazole derivatives. On the one hand, we introduce the approaches for construction of the 2-arylbenzothiazole core, including the following categories: (i) classic condensation of 2-aminothiophenols, (ii) direct arylation of benzothiazoles, (iii) intramolecular cyclization of thiobenzanilides, and (iv) tandem cyclization of anilines/ nitroarenes with elemental sulfur or sulfides. On the other hand, the transition-metal-catalyzed direct C–H functionalizations of 2-arylbenzothiazoles are also involved in this review.1 Introduction2 Applications of 2-Arylbenzothiazoles3 Construction of the 2-Arylbenzothiazole Core4 Synthesis 2-Arylbenzothiazoles via Direct C–H Functionalization5 Conclusion
Collapse
Affiliation(s)
- Puying Luo
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital
| | - Fuqiang Gan
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital
| | - Junyue Lin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University
- College of Chemistry & Chemical Engineering, Jinganshan University
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University
| |
Collapse
|
6
|
Damghani FK, Kiyani H, Pourmousavi SA. Green Three-component Synthesis of Merocyanin Dyes Based on 4- Arylideneisoxazol-5(4H)-ones. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200122093906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A one-pot three-component reaction promoted by choline chloride: zinc(II) chloride deepeutectic
solvent (ChCl-ZnCl2 DES) in an aqueous medium for the synthesis of several merocyanin
dyes based on isoxazol-5(4H)-ones is presented. This three-component approach is efficient, clean,
experimentally simple, convenient, safe, and environmentally friendly. This reaction was performed at
room temperature without using energy sources such as heat, microwave and ultrasound waves. Nonuse
of toxic solvents, available materials, one-vessel, no wasted reagents, simple preparation, and recyclability
of DES are other important points of this method that is significant from the perspective of
green chemistry.
Collapse
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
| | | |
Collapse
|
7
|
Mulligan CJ, Parker JS, Hii KK(M. Revisiting the mechanism of the Fujiwara–Moritani reaction. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00133c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new perspective of the Fujiwara–Moritani reaction is presented, including its kinetic profile and catalyst deactivation studies.
Collapse
Affiliation(s)
- Christopher J. Mulligan
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London W12 0JQ
- UK
| | - Jeremy S. Parker
- Early Chemical Development
- Pharmaceutical Sciences
- R&D
- AstraZeneca
- Macclesfield
| | - King Kuok (Mimi) Hii
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London W12 0JQ
- UK
| |
Collapse
|
8
|
Sarkar R, Mukhopadhyay C. Carbon-Hydrogen Bond Functionalization in Aqueous Medium: A Brief Review. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666191019120048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last few decades, considerable research has led to the introduction of selective and
efficient green as well as sustainable synthetic methods of functionalization of carbon-hydrogen bonds
to form new carbon-carbon and carbon-heteroatom bonds. In this emerging field, significant development
has been attained under various environmentally benign conditions including aqueous medium.
In this review, we have summarized the current development of C-H functionalization carried out in
an aqueous medium and its synthetic applications according to carbon-carbon and carbon-heteroatom
bond formations under green conditions.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
9
|
Zeng H, Luo P, Luo M, Ding H, Ding Q. Synthesis of bioactive 2-(2-(difluoromethoxy)aryl)benzo[d]thiazole derivatives via base-promoted one-pot process. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Liu D, Ding Q, Fu Y, Song Z, Peng Y. Rh-Catalyzed C–H Amidation of 2-Arylbenzo[d]thiazoles: An Approach to Single Organic Molecule White Light Emitters in the Solid State. Org Lett 2019; 21:2523-2527. [DOI: 10.1021/acs.orglett.9b00115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deming Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
11
|
Abdulazeez I, Basheer C, Al-Saadi AA. A selective detection approach for copper(ii) ions using a hydrazone-based colorimetric sensor: spectroscopic and DFT study. RSC Adv 2018; 8:39983-39991. [PMID: 35558198 PMCID: PMC9091284 DOI: 10.1039/c8ra08807a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/24/2018] [Indexed: 11/21/2022] Open
Abstract
The development of an efficient and miniaturized analytical approach to determine trace levels of toxic ions in aqueous fluids presents a current research challenge. Hydrazone-based chemosensors are considered potential candidates due to their high sensitivity and selectivity towards heavy metal ions. Computational techniques can be properly implemented to elucidate possible modes of ligand-metal interaction and provide an in-depth understanding of the chemistry involved. The present study reports the use of 3-hydroxy-5-nitrobenzaldehyde-4-hydroxybenzoylhydrazone (3-HNHBH) ligand for highly sensitive, quick and re-usable colorimetric sensing of copper(ii) ions in aqueous media. DFT calculations suggest that the complexation of 3-HNHBH with copper(ii) ions adopts a seesaw coordination geometry and results in the largest HOMO-LUMO gap and most effective coulombic interaction compared to Zn and Ni counterparts. It demonstrated a high selectivity towards copper ions with a detection limit of 0.34 μg L-1. The ligand was readily regenerated using a 0.5 M HCl solution, indicating its feasibility to be used as a re-usable sensor for the convenient detection of copper ions in aqueous media. The influence of metal interference, pH and solvents on the selectivity and regeneration of the ligand was also investigated.
Collapse
Affiliation(s)
- Ismail Abdulazeez
- Department of Chemistry, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Chanbasha Basheer
- Department of Chemistry, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
12
|
Wu Y, Cai L, Wang C, Mei C, Shi SQ. Sodium Hydroxide-Free Soy Protein Isolate-Based Films Crosslinked by Pentaerythritol Glycidyl Ether. Polymers (Basel) 2018; 10:E1300. [PMID: 30961225 PMCID: PMC6401677 DOI: 10.3390/polym10121300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022] Open
Abstract
The soy protein isolate (SPI), sodium dodecylbenzenesulfonate (SDBS) and pentaerythritol glycidyl ether (PEGE) were used to make biodegradable films in this study. Unlike the usual method that adding sodium hydroxide (NaOH) during the SPI-based film casting, SDBS was used as a surfactant playing the similar role as NaOH. Since NaOH is a chemical with corrosiveness and toxicity, the replacing of NaOH by SDBS might reduce the hazard threat during the utilization of SPI-based films in food packing application. Furthermore, the presentation of SDBS helped dispersing the hydrophobic PEGE into the hydrophilic SPI. PEGE is a crosslinking agent with multiple reactive epoxy groups. The chemical structures and micro morphologies of the fabricated films were investigated by means of FTIR, XRD, and SEM. The thermal stabilities of the films were examined by means of the thermo-gravimetric analysis. After the chemical crosslinking, the ultimate tensile strength of the film was significantly increased, meanwhile, the water absorption was dramatically decreased. It was concluded that the SPI-based film containing 4% PEGE achieved the optimal performance.
Collapse
Affiliation(s)
- Yingji Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA.
| | - Chen Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
13
|
Shan C, Zhu L, Qu LB, Bai R, Lan Y. Mechanistic view of Ru-catalyzed C-H bond activation and functionalization: computational advances. Chem Soc Rev 2018; 47:7552-7576. [PMID: 30182110 DOI: 10.1039/c8cs00036k] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ru-Catalyzed aromatic C-H bond activation and functionalization have emerged as important topics because they have resulted in remarkable progress in organic synthesis. Both experimental and theoretical studies of their mechanisms are important for the design of new synthetic methodologies. In this review, a mechanistic view of the Ru-mediated C-H bond cleavage step is first given to reveal the C-H bond activation modes, including oxidative addition, metathesis and base-assisted deprotonation. In this process, directing groups play an important role in determining the reactivity of the C-H bond. The C-H bond activation generally leads to the formation of a Ru-C bond, which is further functionalized in the subsequent steps. The mechanisms of Ru-catalyzed arylation, alkylation, and alkenylation of arenes are summarized, and these transformations can be categorized into cross-coupling with electrophiles or oxidative coupling with nucleophiles. In addition, the mechanism of ortho-ruthenation-enabled remote C-H bond functionalization is also discussed.
Collapse
Affiliation(s)
- Chunhui Shan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | |
Collapse
|