1
|
Salvatti BA, Lima IT, Pacheco CM, de Souza ROMA, Chagas MA, Moraes AH, de Miranda AS. Exploring lipase regioselectivity: synthesis of regioisomeric acetoxyhydroxynaphthalenes. Org Biomol Chem 2025; 23:2645-2661. [PMID: 39927717 DOI: 10.1039/d4ob01921k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The naphthalene ring is a moiety featured by many bioactive agents. Dihydroxynaphthalenes are readily available substances but their use for the synthesis of a series of compounds results in limited chemical diversity due to the similar reactivity of the phenolic hydroxyl groups. Herein, we describe the use of regioselective lipases in acylation and hydrolysis reactions to synthesize 5 different regioisomeric acetoxyhydroxynaphthalenes on a 91-122 mg scale with moderate to good yields (50-78%) from 1,3-, 1,6- and 1,7-dihydroxynaphthalenes and their corresponding diacetates. Reactions were optimised through medium engineering, thus providing information on the impact of different organic solvents on conversion and selectivity. Additionally, computational studies using molecular dynamic simulations were performed and suggested a correlation between the regiopreference displayed by lipase CAL-B in hydrolytic reactions and a distance ≤3.2 Å between the most reactive carbonyl group and the Ser-105 residue on the catalytic site. The herein described enzymatic methods may allow for introducing two different moieties at the naphthalene ring through a protection-deprotection strategy, thus allowing for better exploitation of the chemical space.
Collapse
Affiliation(s)
- Brunno A Salvatti
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270, Brazil.
| | - Isabela T Lima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270, Brazil.
| | - Caio M Pacheco
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941910, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941910, Brazil
| | - Marcelo A Chagas
- Departamento de Ciências Exatas, Universidade do Estado de Minas Gerais, João Monlevade, 35930, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270, Brazil.
| | - Amanda S de Miranda
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270, Brazil.
| |
Collapse
|
2
|
Petrus R, Matuszak K, Kinzhybalo V. Synthesis of ω-Hydroxy Fatty Acid Alkyl Esters by Macrocyclic Lactones Alcoholysis Catalyzed by Homoleptic and Heteroleptic Zinc Aryloxides. Chem Asian J 2024; 19:e202400526. [PMID: 38924377 DOI: 10.1002/asia.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A series of zinc aryloxides, [Zn4(sal-Me)8]⋅2.5(C7H8) (1), [Zn4(sal-Me)8]⋅CH2Cl2 (2), [Zn4(μ3-OR)2(sal-R)6] (3) (for R=Me (0.51), Et (0.49)), [Zn4(μ3-OMe)4(sal-Me)4(HOMe)4] (4), [Zn(sal-Me)2(py)2]⋅THF (5), {[Zn(sal-Me)2(tmbpy)] ⋅ 2(C6H5CH3)}n (6), [Zn2(sal-Me)2(THF)2Cl2] ⋅ 0.5(C6H5CH3) (7), and [Zn4(μ3-OMe)2(sal-Me)4Cl2] (8) (Hsal-Me=methyl salicylate, py=pyridine, tmbpy=4,4'-trimethylenedipyridine) were obtained that have different nuclearities and central core topologies and contain ligands of different basicity and coordination abilities.
Collapse
Affiliation(s)
- Rafał Petrus
- Faculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370, Wrocław, Poland
| | - Karolina Matuszak
- Faculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370, Wrocław, Poland
| | - Vasyl Kinzhybalo
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, 50-422, Wrocław, Poland
| |
Collapse
|
3
|
Dias OAT, Konar S, Pakharenko V, Graziano A, Leão AL, Tjong J, Jaffer S, Sain M. Regioselective Protection and Deprotection of Nanocellulose Molecular Design Architecture: Robust Platform for Multifunctional Applications. Biomacromolecules 2021; 22:4980-4987. [PMID: 34791880 DOI: 10.1021/acs.biomac.1c00909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselectively substituted nanocellulose was synthesized by protecting the primary hydroxyl group. Herein, we took advantage of the different reactivities of primary and secondary hydroxyl groups to graft large capping structures. This study mainly focuses on regioselective installation of trityl protecting groups on nanocellulose chains. The elemental analysis and nuclear magnetic resonance spectroscopy of regioselectively substituted nanofibrillated cellulose (NFC) suggested that the trityl group was successfully grafted in the primary hydroxyl group with a degree of substitution of nearly 1. Hansen solubility parameters were employed, and the binary system composed of an ionic liquid and pyridine as a base was revealed to be the optimum condition for regioselective functionalization of nanocellulose. Interestingly, the dissolution of NFC in the ionic liquid and the subsequent deprotection process of NFC substrates hardly affected the crystalline structure of NFC (3.6% decrease in crystallinity). This method may provide endless possibilities for the design of advanced engineered nanomaterials with multiple functionalities. We envisage that this protection/deprotection approach may lead to a bright future for the fabrication of multifunctional devices based on nanocellulose.
Collapse
Affiliation(s)
- Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Viktoriya Pakharenko
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Antimo Graziano
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), Botucatu, São Paulo 18610307, Brazil
| | - Jimi Tjong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Shaffiq Jaffer
- TOTAL American Services Inc., Hopkinton, Massachusetts 01748, United States
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| |
Collapse
|
4
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
5
|
Prasad YS, Saritha B, Tamizhanban A, Lalitha K, Kabilan S, Maheswari CU, Sridharan V, Nagarajan S. Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials. RSC Adv 2018; 8:37136-37145. [PMID: 35557831 PMCID: PMC9089313 DOI: 10.1039/c8ra07703g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel derived from glycolipids that provide reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration. Glycolipids were derived from α-chloralose and various vinyl esters using Novozyme 435, an immobilized lipase B from Candida antarctica as a catalyst, in good yield. These glycolipids undergo spontaneous self-assembly in paraffin oil to form an oleogel, in which curcumin was successfully incorporated to generate a composite gel. Morphological analysis of the oleogel and composite gel clearly revealed the formation of a 3D fiberous network. Rheological investigation revealed the thermal and mechanical processability of the oleogel and composite gel under various experimental conditions. Interestingly, the developed injectable oleogel and composite gel are able to accelerate the wound healing process by regulating the overlapping phases of inflammation, cell proliferation and extracellular matrix remodelling. Since chloralose displays anesthetic properties, this study will establish a new strategy to develop anesthetic wound healing oleogels in the future.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Balasubramani Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Ayyapillai Tamizhanban
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Sakthivel Kabilan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla) District-Samba Jammu-181143 Jammu and Kashmir India
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|