1
|
Zhu H, Powell JN, Geldchen VA, Drumheller AS, Driver TG. Harnessing the Reactivity of Nitroarene Radical Anions to Create Quinoline N-Oxides by Electrochemical Reductive Cyclization. Angew Chem Int Ed Engl 2025; 64:e202416126. [PMID: 39428355 PMCID: PMC11753951 DOI: 10.1002/anie.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Electrochemical reduction of 2-allyl-substituted nitroarenes using a simple, undivided electrochemical cell with non-precious electrodes to generate nitroarene radical anions was developed. The nitroarene radical anion intermediates participate in 1,5-hydrogen atom transfer reactions to construct quinoline N-oxides bearing aryl-, heteroaryl-, alkenyl-, benzyl-, sulfonyl-, or carboxyl groups.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Jair N Powell
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Victoria A Geldchen
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Adam S Drumheller
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| |
Collapse
|
2
|
He J, Yokoi K, Wixted B, Zhang B, Kawamata Y, Renata H, Baran PS. Biocatalytic C-H oxidation meets radical cross-coupling: Simplifying complex piperidine synthesis. Science 2024; 386:1421-1427. [PMID: 39700271 PMCID: PMC11760214 DOI: 10.1126/science.adr9368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp3 character (Fsp3) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp2 molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling. This combination is directly analogous to electrophilic aromatic substitution followed by Pd-couplings for flat molecules, streamlining synthesis of 3D molecules. This study offers a generalizable strategy for accessing complex architectures, appealing to both medicinal and process chemists.
Collapse
Affiliation(s)
- Jiayan He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kenta Yokoi
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Breanna Wixted
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| |
Collapse
|
3
|
Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. N- tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles. Beilstein J Org Chem 2021; 17:1096-1140. [PMID: 34093879 PMCID: PMC8144919 DOI: 10.3762/bjoc.17.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.
Collapse
Affiliation(s)
- Joseane A Mendes
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute of Research of Natural Products, Health Science Center, Federal University of Rio de Janeiro UFRJ, CEP 21941-590, Brazil
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| |
Collapse
|
4
|
Yamamoto K, Kuriyama M, Onomura O. Shono-Type Oxidation for Functionalization of N-Heterocycles. CHEM REC 2021; 21:2239-2253. [PMID: 33656281 DOI: 10.1002/tcr.202100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
The development of facile synthetic methods for stereodefined aliphatic cyclic amines is an important research field in synthetic organic chemistry since such scaffolds constitute a variety of natural products and biologically active compounds. N-Acyl cyclic N,O-acetals which prepared by electrochemical oxidation of the corresponding cyclic amines have proven to be useful and versatile precursors for the synthesis of such skeletons. In this Personal Account, we introduce our efforts toward the development of synthetic strategies for the diastereo- and/or enantioselective synthesis of cyclic amines by using electrochemically prepared cyclic N,O-acetals. In addition, the investigation of the "memory of chirality" in the electrooxidative methoxylation of N-acyl amino acid derivatives, the strategy for the synthesis of chiral azabicyclic compounds by utilizing electrochemical oxidation, and halogen cation-mediated synthesis of nitrogen-containing heterocycles are also described.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
5
|
Foubelo F, Yus M. Chiral N-tert-Butylsulfinyl Imines: New Discoveries. CHEM REC 2020; 21:1300-1341. [PMID: 33241905 DOI: 10.1002/tcr.202000122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Indexed: 12/21/2022]
Abstract
In this account the reactions of chiral N-tert-butylsulfinyl imines with organometallic reagents such as organoalkaline (lithium, sodium, potassium and cesium derivatives), organomagnesium, organozinc, organoboron, organoaluminium, organoindium and organosilicon compounds is comprehensively described. The reactivity in all cases is derived to synthetic applications in order to prepare interesting organic nitrogenated molecules, especially in the field of alkaloid compounds.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
6
|
Kaczorek D, Kawęcki R. Highly stereoselective synthesis of non-racemic 3-substituted dihydro-benzo[de]isoquinolinones via an addition-cyclization-substitution method. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Nie XD, Mao ZY, Zhou W, Si CM, Wei BG, Lin GQ. A diastereoselective approach to amino alcohols and application for divergent synthesis of dolastatin 10. Org Chem Front 2020. [DOI: 10.1039/c9qo01292c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A diastereoselective approach to obtain amino alcohols through SmI2-induced radical addition and divergent synthesis of dolastatin 10 are described.
Collapse
Affiliation(s)
- Xiao-Di Nie
- Institutes of Biomedical Sciences and School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Zhuo-Ya Mao
- Institutes of Biomedical Sciences and School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Wen Zhou
- Institutes of Biomedical Sciences and School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
8
|
Zhao G, Canterbury DP, Taylor AP, Cheng X, Mikochik P, Bagley SW, Tong R. Synthesis of 2-Arylpiperidines via Pd-Catalyzed Arylation of Aza-Achmatowicz Rearrangement Products with Arylboronic Acids. Org Lett 2019; 22:458-463. [PMID: 31880455 DOI: 10.1021/acs.orglett.9b04220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first Pd-catalyzed arylation of aza-Achmatowicz rearrangement products with arylboronic acids is achieved, providing versatile 2-aryldihydropyridinones for facile synthesis of highly functionalized 2-arylpiperidines. Key to this arylation is the use of non-phosphine-ligand palladium precatalyst. The substrate scope is demonstrated with >26 examples, and the utility of 2-aryldihydropyridinones is illustrated by the synthesis of a small collection of 2-arylpiperidines with substituents or functional groups at any carbon (C2-C6) as well as two NK1 receptor antagonists (+)-CP-999,94 and (+)-L-733,060.
Collapse
Affiliation(s)
- Guodong Zhao
- Department of Chemistry , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon , Hong Kong, China
| | - Daniel P Canterbury
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Alexandria P Taylor
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Xiayun Cheng
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Peter Mikochik
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Scott W Bagley
- Worldwide Research & Development, Groton Laboratories , Pfizer, Inc. , Groton , Connecticut 06340 , United States
| | - Rongbiao Tong
- Department of Chemistry , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon , Hong Kong, China
| |
Collapse
|
9
|
Stereoselective addition of Grignard reagents to sulfinimines derived from tartrate diol (threitol): Generation of chiral building blocks for the collective total synthesis of lentiginosine, conhydrine and methyldihydropalustramate. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Velasco M, Hernández U, Terán JL, Gnecco D, Orea ML, Aparicio DM, Gómez-Calvario V, Bernès S, Juárez JR. Stereoconvergent synthesis of N-Boc-(2R,3S)-3-hydroxy-2-phenylpiperidine. Tetrahedron Lett 2019; 60:820-824. [DOI: 10.1016/j.tetlet.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wang XM, Liu YW, Wang QE, Zhou Z, Si CM, Wei BG. A divergent method to key unit of tubulysin V through one-pot diastereoselective Mannich process of N,O-acetal with ketone. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Zhong F, Yue WJ, Zhang HJ, Zhang CY, Yin L. Catalytic Asymmetric Construction of Halogenated Stereogenic Carbon Centers by Direct Vinylogous Mannich-Type Reaction. J Am Chem Soc 2018; 140:15170-15175. [DOI: 10.1021/jacs.8b09484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Yuan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Diastereoselective approach to trans -5-hydroxy-6-substitutedethanone-2-piperidinones: Scalable syntheses of (+)-febrifugine and (+)-halofuginone. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|