1
|
Bravo-Alfaro DA, Montalvo-González E, Zapien-Macias JM, Sampieri-Moran JM, García HS, Luna-Bárcenas G. Annonaceae acetogenins: A potential treatment for gynecological and breast cancer. Fitoterapia 2024; 178:106187. [PMID: 39147170 DOI: 10.1016/j.fitote.2024.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Breast and gynecological cancers are major health concerns due to their increasing incidence rates, and in some cases, their low survival probability. In recent years, multiple compounds of natural origin have been analyzed as alternative treatments for this disease. For instance, Acetogenins are plant secondary metabolites from the Annonaceae family, and its potential anticancer activity has been reported against a wide range of cancer cells both in vitro and in vivo. Several studies have demonstrated promising results of Acetogenins' antitumor capacity, given their selective activity of cellular inhibition at low concentrations. This review outlines the origin, structure, and antineoplastic activities in vitro and in vivo of Acetogenins from Annonaceae against breast cancer and gynecological cancers reported to date. Here, we also provide a systematic summary of the activity and possible mechanisms of action of Acetogenins against these types of cancer and provide references for developing future therapies based on Acetogenins and nanotechnologies.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Av. Tecnológico 2595 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico
| | - J Martin Zapien-Macias
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611, United States of America
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico.
| |
Collapse
|
2
|
Hosomi H, Akatsuka A, Dan S, Iwasaki H, Nambu H, Kojima N. Synthesis of Acetogenin Analogs Comprising Pyrimidine Moieties Linked by Amine Bonds and Their Inhibitory Activity against Human Cancer Cell Lines. Chem Pharm Bull (Tokyo) 2022; 70:823-826. [DOI: 10.1248/cpb.c22-00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Akinobu Akatsuka
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| | - Shingo Dan
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| | | | | | | |
Collapse
|
3
|
Ando S, Kojima N, Moyama C, Fujita M, Ohta K, Ii H, Nakata S. JCI‑20679 suppresses the proliferation of glioblastoma stem cells by activating AMPK and decreasing NFATc2 expression levels. Mol Med Rep 2022; 26:238. [PMID: 35621135 DOI: 10.3892/mmr.2022.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
The prognosis of glioblastoma, which is the most frequent type of adult‑onset malignant brain tumor, is extremely poor. Therefore, novel therapeutic strategies are needed. Previous studies report that JCI‑20679, which is synthesized based on the structure of naturally occurring acetogenin, inhibits mitochondrial complex I and suppresses the growth of various types of cancer cells. However, the efficacy of JCI‑20679 on glioblastoma stem cells (GSCs) is unknown. The present study demonstrated that JCI‑20679 inhibited the growth of GSCs derived from a transposon system‑mediated murine glioblastoma model more efficiently compared with the growth of differentiation‑induced adherent cells, as determined by a trypan blue staining dye exclusion test. The inhibition of proliferation was accompanied by the blockade of cell‑cycle entry into the S‑phase, as assessed by a BrdU incorporation assay. JCI‑20679 decreased the mitochondrial membrane potential, suppressed the oxygen consumption rate and increased mitochondrial reactive oxygen species generation, indicating that JCI‑20679 inhibited mitochondrial activity. The mitochondrial inhibition was revealed to increase phosphorylated (phospho)‑AMPKα levels and decrease nuclear factor of activated T‑cells 2 (NFATc2) expression, and was accompanied by a decrease in calcineurin phosphatase activity. Depletion of phospho‑AMPKα by knockdown of AMPKβ recovered the JCI‑20679‑mediated decrease in NFATc2 expression levels, as determined by western blotting and reverse transcription‑quantitative PCR analysis. Overexpression of NFATc2 recovered the JCI‑20679‑mediated suppression of proliferation, as determined by a trypan blue staining dye exclusion test. These results suggest that JCI‑20679 inhibited mitochondrial oxidative phosphorylation, which activated AMPK and reduced NFATc2 expression levels. Moreover, systemic administration of JCI‑20679 extended the event‑free survival rate in a mouse model transplanted with GSCs. Overall, these results suggested that JCI‑20679 is a potential novel therapeutic agent against glioblastoma.
Collapse
Affiliation(s)
- Shota Ando
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Naoto Kojima
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Chiami Moyama
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, Osaka‑Sayama, Osaka 589‑8511, Japan
| | - Kaito Ohta
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto 607‑8414, Japan
| |
Collapse
|
4
|
Ohta K, Fushimi T, Okamura M, Akatsuka A, Dan S, Iwasaki H, Yamashita M, Kojima N. Structure-antitumor activity relationship of hybrid acetogenins focusing on connecting groups between heterocycles and the linker moiety. RSC Adv 2022; 12:15728-15739. [PMID: 35685710 PMCID: PMC9131733 DOI: 10.1039/d2ra02399g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
We studied hybrid molecules of annonaceous acetogenins and mitochondrial complex I-inhibiting insecticides to develop a novel anticancer agent. A structure–antitumor activity relationship study focusing on the connecting groups between the heterocycles and the linker moiety bearing the tetrahydrofuran moiety was conducted. Eleven hybrid acetogenins with 1-methylpyrazole instead of γ-lactone were synthesized and their growth inhibitory activities against 39 human cancer cell lines were evaluated. The nitrogen atom at the 2′-position of the linker moiety was essential for inhibiting cancer growth. The 1-methylpyrazole-5-sulfonamide analog showed potent growth inhibition of NCI-H23, a human lung cancer cell line, in a xenograft mouse assay without critical toxicity. Hence, the results of this study may pave the way for the development of novel anticancer agents, with both selective and broad anticancer activities. The in vivo active 1-methylpyrazole-5-sulfonamide analog of acetogenins was obtained by the structure–antitumor activity relationship, focusing on the connecting groups between the heterocycle and the linker.![]()
Collapse
Affiliation(s)
- Kaito Ohta
- Kyoto Pharmaceutical University 1 Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Tetsuya Fushimi
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Mutsumi Okamura
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research 3-8-1 Ariake-ku Tokyo 135-8550 Japan
| | - Akinobu Akatsuka
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research 3-8-1 Ariake-ku Tokyo 135-8550 Japan
| | - Shingo Dan
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research 3-8-1 Ariake-ku Tokyo 135-8550 Japan
| | - Hiroki Iwasaki
- Kyoto Pharmaceutical University 1 Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Masayuki Yamashita
- Kyoto Pharmaceutical University 1 Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Naoto Kojima
- Kyoto Pharmaceutical University 1 Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| |
Collapse
|
5
|
Ando S, Moyama C, Kojima N, Fujita M, Ohta K, Kohno Y, Ii H, Nakata S. JCI-20679 suppresses autophagy and enhances temozolomide-mediated growth inhibition of glioblastoma cells. Biochem Biophys Res Commun 2022; 591:62-67. [PMID: 34999255 DOI: 10.1016/j.bbrc.2021.12.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/30/2023]
Abstract
Glioblastoma, a type of brain cancer, is one of the most aggressive and lethal types of malignancy. The present study shows that JCI-20679, an originally synthesized mitochondrial complex I inhibitor, enhances the anti-proliferative effects of suboptimal concentrations of the clinically used chemotherapeutic drug temozolomide in glioblastoma cells. Analysis of the effects of temozolomide combined with JCI-20679 using isobologram and combination index methods demonstrated that the combination had synergistic effects in murine and human glioblastoma cells. We found that JCI-20679 inhibited the temozolomide-mediated induction of autophagy that facilitates cellular survival. The autophagy induced by temozolomide increased ATP production, which confers temozolomide resistance in glioblastoma cells. JCI-20679 blocked temozolomide-mediated increases in ATP levels and increased the AMP/ATP ratio. Furthermore, JCI-20679 enhanced the therapeutic effects of temozolomide in an orthotopic transplantation model of glioblastoma. These results indicate that JCI-20679 may be promising as a novel agent for enhancing the efficacy of temozolomide against glioblastoma.
Collapse
Affiliation(s)
- Shota Ando
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Chiami Moyama
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Naoto Kojima
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Misasagi-Shichono-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Faculty of Medicine, Kindai University, Ohno-Higashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kaito Ohta
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Misasagi-Shichono-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Yukina Kohno
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina, Kyoto, 607-8414, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina, Kyoto, 607-8414, Japan.
| |
Collapse
|
6
|
Ohta K, Akatsuka A, Dan S, Iwasaki H, Yamashita M, Kojima N. Structure-Activity Relationships of Thiophene Carboxamide Annonaceous Acetogenin Analogs: Shortening the Alkyl Chain in the Tail Part Significantly Affects Their Growth Inhibitory Activity against Human Cancer Cell Lines. Chem Pharm Bull (Tokyo) 2021; 69:1029-1033. [PMID: 34602571 DOI: 10.1248/cpb.c21-00450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In a previous study, we found that the thiophene carboxamide solamin analog, which is a mono-tetrahydrofuran annonaceous acetogenin, showed potent antitumor activity through the inhibition of mitochondrial complex I. In this study, we synthesized analogs with short alkyl chains instead of the n-dodecyl group in the tail part. We evaluated their growth inhibitory activities against human cancer cell lines. We found that the alkyl chain in the tail part plays an essential role in their activity.
Collapse
Affiliation(s)
| | - Akinobu Akatsuka
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| | - Shingo Dan
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| | | | | | | |
Collapse
|
7
|
|
8
|
Kojima N, Hayashi H, Iwasaki H, Yamashita M. Syntheses of C2'-Fluorinated Analogs of Solamin. Chem Pharm Bull (Tokyo) 2020; 68:675-678. [PMID: 32612003 DOI: 10.1248/cpb.c20-00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The details of the total syntheses of C2'-fluorinated analogs of solamin, an antitumor annonaceous acetogenin, are described. Fluorine was enantioselectively introduced at the C2'-position by organocatalytic α-fluorination of the aldehyde according to a previously reported method. C2'-fluorinated solamin and its C2'-diastereomer were synthesized by the Sonogashira coupling of a tetrahydrofuran fragment and fluorine-containing γ-lactone fragments.
Collapse
Affiliation(s)
| | - Hiromi Hayashi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | |
Collapse
|
9
|
Shimotori Y, Hoshi M, Ogawa N, Miyakoshi T, Kanamoto T. Synthesis, antibacterial activities, and sustained perfume release properties of optically active5-hydroxy- and 5-acetoxyalkanethioamide analogues. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2019-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract5-Acetoxy- and 5-hydroxyalkanethioamide analogues showed high antibacterial activity against Staphylococcus aureus. Antibacterial thioamides were prepared from 5-alkyl-δ-lactones by amidation, thionation, and subsequent deacetylation. Optically active thioamides with 99% diastereomeric excesses were prepared by diastereomeric resolution using Cbz-L-proline as the resolving agent. Antibacterial thioamides were slowly lactonized by a lipase catalyst. Therefore, these thioamides are potential sustained-release perfume compounds having antibacterial properties.
Collapse
Affiliation(s)
- Yasutaka Shimotori
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido090-8507, Japan
| | - Masayuki Hoshi
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido090-8507, Japan
| | - Narihito Ogawa
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki214-8571Japan
| | - Tetsuo Miyakoshi
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki214-8571Japan
| | - Taisei Kanamoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida194-8543, Japan
| |
Collapse
|
10
|
Matsumoto T, Akatsuka A, Dan S, Iwasaki H, Yamashita M, Kojima N. Synthesis and cancer cell growth inhibition effects of acetogenin analogs bearing ethylene glycol units for enhancing the water solubility. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
D’yakonov VA, Tuktarova RA, Dzhemilev UM. Ti-Catalyzed Cross-Cyclomagnesiation of 1,2-Dienes in the Total Z, Z, Z-Stereoselective Synthesis of Natural Acetogenin-Chatenaytrienin-1. ACS OMEGA 2019; 4:14085-14091. [PMID: 31497727 PMCID: PMC6714518 DOI: 10.1021/acsomega.9b01951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The first total synthesis of natural acetogenin, chatenaytrienin-1, was performed in 10 steps and in 41% overall yield using cross-cyclomagnesiation of (6Z)-heptadeca-1,2,6-triene and trideca-11,12-dien-1-ol tetrahydropyran acetal with EtMgBr in the presence of Mg metal and the Cp2TiCl2 catalyst (10 mol %) as the key step of the synthesis.
Collapse
|