1
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Uruma Y, Yamada T, Kojima T, Zhang T, Qu C, Ishihara M, Watanabe T, Wakamatsu K, Maekawa H. Degradation of three β-O-4 lignin model compounds via organic electrolysis and elucidation of the degradation mechanisms. RSC Adv 2023; 13:17991-18000. [PMID: 37323436 PMCID: PMC10265137 DOI: 10.1039/d3ra02486e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Woody biomass comprising cellulose, hemicellulose, and lignin has been the focus of considerable attention as an alternative energy source to fossil fuel for various applications. However, lignin has a complex structure, which is difficult to degrade. Typically, lignin degradation is studied using β-O-4 lignin model compounds as lignin contains a large number of β-O-4 bonds. In this study, we investigated the degradation of the following lignin model compounds via organic electrolysis: 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol 1a, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol 2a, and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol 3a. The electrolysis was conducted for 2.5 h at a constant current of 0.2 A using a carbon electrode. Various degradation products such as 1-phenylethane-1,2-diol, vanillin, and guaiacol were identified upon separation via silica-gel column chromatography. The degradation reaction mechanisms were elucidated using electrochemical results as well as density functional theory calculations. The results suggest that the organic electrolytic reaction can be used for the degradation reaction of a lignin model with β-O-4 bonds.
Collapse
Affiliation(s)
- Yoshiyuki Uruma
- Department of Integrated Engineering, Chemistry and Biochemistry Division, National Institute of Technology, Yonago College 4448, Hikona-cho Yonago City Tottori 683-8502 Japan
| | - Tomohiro Yamada
- Department of Materials Science and Technology, Nagaoka University of Technology 1603-1, Kamitomioka-cho Nagaoka Niigata 940-2188 Japan
| | - Tsubasa Kojima
- Department of Integrated Engineering, Chemistry and Biochemistry Division, National Institute of Technology, Yonago College 4448, Hikona-cho Yonago City Tottori 683-8502 Japan
| | - Tianyuan Zhang
- Department of Materials Science and Technology, Nagaoka University of Technology 1603-1, Kamitomioka-cho Nagaoka Niigata 940-2188 Japan
| | - Chen Qu
- Research Institute for Sustainable Humanosphere, Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Moe Ishihara
- Department of Integrated Engineering, Chemistry and Biochemistry Division, National Institute of Technology, Yonago College 4448, Hikona-cho Yonago City Tottori 683-8502 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science 1-1 Ridaicho Kita-ku Okayama 700-0005 Japan
| | - Hirofumi Maekawa
- Department of Materials Science and Technology, Nagaoka University of Technology 1603-1, Kamitomioka-cho Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
3
|
Ma X, Ma J, Li M, Gu Y, Wang T. MnO2 oxidative degradation of lignin and electrochemical recovery study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Yang C, Chen H, Peng T, Liang B, Zhang Y, Zhao W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63839-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Tang HT, Jia JS, Pan YM. Halogen-mediated electrochemical organic synthesis. Org Biomol Chem 2021; 18:5315-5333. [PMID: 32638806 DOI: 10.1039/d0ob01008a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In general, halogenide anions are anodically oxidized into active species, which can be elemental halogen, halogen cations, or halogen radicals. These species subsequently react with substrates, such as olefins, ketones, or amines, to generate halogenated products. We review the mechanisms of these reactions.
Collapse
Affiliation(s)
- Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
7
|
Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. CHEMSUSCHEM 2020; 13:4214-4237. [PMID: 32460408 DOI: 10.1002/cssc.202000987] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Lignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice. Lignin valorization is greatly advantaged when biomass carbon is retained in the fuel and chemical products and when energy quality is enhanced by electrochemical upgrading. Though lignin upgrading and valorization are very desirable in principle, many barriers involved in lignin pretreatment, extraction, and depolymerization must be overcome to unlock its full potential. This Review addresses the electrochemical transformation of various lignins with the aim of gaining a better understanding of many of the barriers that currently exist in such technologies. These studies give insight into electrochemical lignin depolymerization and upgrading to value-added commodities with the end goal of achieving a global low-carbon circular economy.
Collapse
Affiliation(s)
- Mahlet Garedew
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Fang Lin
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Bing Song
- Scion, 49 Sala Street, Private Bag 3020, Rotorua, 3020, New Zealand
| | - Tamara M DeWinter
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Chun Ho Lam
- City University of Hong Kong, School of Energy and Environment, Kowloon Tong, China
| | - Paul T Anastas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
8
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|
9
|
Chen L, Barton LM, Vantourout JC, Xu Y, Chu C, Johnson EC, Sabatini JJ, Baran PS. Electrochemical Cyclobutane Synthesis in Flow: Scale-Up of a Promising Melt-Castable Energetic Intermediate. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Longrui Chen
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M. Barton
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yinghua Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chengpu Chu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Eric C. Johnson
- Energetics Synthesis & Formulation Branch, U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Jesse J. Sabatini
- Energetics Synthesis & Formulation Branch, U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Li T, Mo JY, Weekes DM, Dettelbach KE, Jansonius RP, Sammis GM, Berlinguette CP. Photoelectrochemical Decomposition of Lignin Model Compound on a BiVO 4 Photoanode. CHEMSUSCHEM 2020; 13:3622-3626. [PMID: 32369260 DOI: 10.1002/cssc.202001134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The photoelectrochemical decomposition of lignin model compounds at a BiVO4 photoanode is demonstrated with simulated sunlight and an applied bias of 2.0 V. These prototypical lignin model compounds are photoelectrochemically converted into the corresponding aryl aldehyde and phenol derivatives in a single step with conversion of up to ≈64 % over 20 h. Control experiments suggest that vanadium sites are electrocatalytically active, which precludes the need for a redox mediator in solution. This feature of the system is corroborated by a layer of V2 O5 deposited on BiVO4 serving to boost the conversion by 10 %. Our methodology capitalizes on the reactive power of sunlight to drive reactions that have only been studied previously by electrochemical or catalytic methods. The use of a BiVO4 photoanode to drive lignin model decomposition therefore provides a new platform to extract valuable aromatic chemical feedstocks using solar energy, electricity and biomass as the only inputs.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jia Yi Mo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - David M Weekes
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Kevan E Dettelbach
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Ryan P Jansonius
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
11
|
Chen J, Yang H, Fu H, He H, Zeng Q, Li X. Electrochemical oxidation mechanisms for selective products due to C-O and C-C cleavages of β-O-4 linkages in lignin model compounds. Phys Chem Chem Phys 2020; 22:11508-11518. [PMID: 32393942 DOI: 10.1039/d0cp01091j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electrochemical oxidation is a promising and effective method for lignin depolymerization owing to its selective oxidation capacity and environmental friendliness. Herein, the electrooxidation of non-phenolic alkyl aryl ether monomers and β-O-4 dimers was experimentally (by cyclic voltammetry, in situ spectroelectrochemistry, and gas chromatography-mass spectroscopy) and theoretically (by DFT calculations) explored in detail. Compared to the reported literature (T. Shiraishi, T. Takano, H. Kamitakahara and F. Nakatsubo, Holzforschung, 2012, 66(3), 303-309), 1-(4-ethoxyphenyl)ethanol showed a distinguishable oxidation pathway, where the resulting carbonyl product surprisingly underwent a bond cleavage on alkyl-aryl ether to ultimately produce a quinoid like compound. In contrast, β-O-4 dimers, like 2-phenoxy-1-phenethanol and 2-phenoxyacetophenone also demonstrated electrochemical oxidation induced by Cβ-O and Cα-Cβ bond cleavages. For the oxidation products, the presence of the Cα-hydroxyl group in dimers was the key to selectively generate aldehyde-containing species under mild electrochemical conditions, otherwise it produces alcohol-containing products following a different mechanism compared to the Cα[double bond, length as m-dash]O containing dimers.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | | | | | | | | | | |
Collapse
|
12
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
13
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 2098] [Impact Index Per Article: 262.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|