1
|
Kobayakawa T, Arioka M, Yamamoto K, Tsuji K, Tamamura H. Diastereoselective synthesis of ( Z)-fluoroalkene dipeptide isosteres utilizing chiral auxiliaries. Org Biomol Chem 2025; 23:4333-4336. [PMID: 39945507 DOI: 10.1039/d5ob00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
An efficient method for diastereo-controlled synthesis of (Z)-fluoroalkene dipeptide isosteres (FADIs) was developed. Two chiral centers were constructed by applying our synthetic methodology for chloroalkene dipeptide isosteres (CADIs) using Ellman's imine for corresponding to the N-terminal amino acid residues and Oppolzer's sultam for corresponding to the C-terminal amino acid residues, affording dipeptidomimetic in a stereocontrolled manner with high diastereoselectivity.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Marisa Arioka
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kenichi Yamamoto
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kohei Tsuji
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Tamamura
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
2
|
Kobayakawa T, Tsuji K, Tamamura H. Design, synthesis and evaluation of bioactivity of peptidomimetics based on chloroalkene dipeptide isosteres. Bioorg Med Chem 2024; 110:117811. [PMID: 38959684 DOI: 10.1016/j.bmc.2024.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid β fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Kobayakawa T, Tamamura H. Chloroalkene dipeptide isosteres as peptidomimetics. Methods Enzymol 2021; 656:191-239. [PMID: 34325787 DOI: 10.1016/bs.mie.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date various biologically active peptides have been discovered, characterized and modified for drug discovery. However, the utilization of peptides as therapeutics involves some limitation due to several factors, including low metabolic stability owing to proteolysis and non-specific interactions with multiple off-target molecules. Hence, the development of "peptidomimetics," in which a part or whole of a molecule is modified, is a desirable strategy to enhance the stability or bioactivity of peptide-based drugs. In this situation, we have designed and developed a synthetic method for chloroalkene dipeptide isosteres (CADIs), which involves replacement of an amide bond in peptides with a chloroalkene structure and are classified as peptidomimetics. By a developed synthetic method, an N-tert-butylsulfonyl protected CADI can be obtained utilizing diastereoselective allylic alkylation with organocopper reagents as a key reaction. This CADI can be transformed into an N-fluorenylmethoxycarbonyl protected CADI in short steps. In addition, CADIs are used in Fmoc-based solid-phase peptide synthesis and introduced into a bioactive peptide. Protocols for practical preparation of some CADIs and peptide mimetics containing a CADI are described as detailed recipes.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
4
|
Kobayakawa T, Azuma C, Watanabe Y, Sawamura S, Taniguchi A, Hayashi Y, Tsuji K, Tamamura H. Development of Methods for Convergent Synthesis of Chloroalkene Dipeptide Isosteres and Its Application. J Org Chem 2021; 86:5091-5101. [DOI: 10.1021/acs.joc.0c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chika Azuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Watanabe
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shunsuke Sawamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
5
|
Okita H, Kato Y, Masuzawa T, Arai K, Takeo S, Sato K, Mase N, Oyoshi T, Narumi T. Stereoselective synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres and their application to 14-mer RGG peptidomimetics. RSC Adv 2020; 10:29373-29377. [PMID: 35521116 PMCID: PMC9055925 DOI: 10.1039/d0ra06554d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction.
Collapse
Affiliation(s)
- Hikari Okita
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Yuna Kato
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tatsuki Masuzawa
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Kosuke Arai
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Sayuri Takeo
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Takanori Oyoshi
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| |
Collapse
|
6
|
Kobayakawa T, Tamamura H. Development for Peptidomimetic Chemistry based on Chloroalkene Structures. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
7
|
Kobayakawa T, Matsuzaki Y, Hozumi K, Nomura W, Nomizu M, Tamamura H. Synthesis of a Chloroalkene Dipeptide Isostere-Containing Peptidomimetic and Its Biological Application. ACS Med Chem Lett 2018; 9:6-10. [PMID: 29348803 DOI: 10.1021/acsmedchemlett.7b00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023] Open
Abstract
The first rapid and efficient chemical synthesis of a cyclic Arg-Gly-Asp (RGD) peptide containing a chloroalkene dipeptide isostere (CADI) is reported. By a developed synthetic method, an N-tert-butylsulfonyl protected CADI was obtained utilizing diastereoselective allylic alkylation as a key reaction. This CADI was also transformed into an N-Fmoc protected CADI in a few steps. The CADI was used in Fmoc-based solid-phase peptide synthesis. The first synthesis of a CADI-containing cyclic RGD peptide was successful, and the synthesized CADI-containing peptidomimetic was found to be a more potent inhibitor against integrin-mediated cell attachment than the parent cyclic peptide.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yudai Matsuzaki
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kentaro Hozumi
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-039, Japan
| | - Wataru Nomura
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Motoyoshi Nomizu
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-039, Japan
| | - Hirokazu Tamamura
- Institute
of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
8
|
Ando K, Takao M, Oyama I, Furuta K. One-Pot Preparation of Ethyl 2(Z)-4-(Anilinoxy)pentenoate by α-Aminoxylation of Propanal Followed by Z-Selective HWE Reaction and the Study on Its Cyclization Reaction. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|