1
|
Selepe MA, Mthembu ST, Sonopo MS. Total synthesis of isoflavonoids. Nat Prod Rep 2025; 42:540-591. [PMID: 39932198 DOI: 10.1039/d4np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2012 to 2024Isoflavonoids are phenolic compounds with wide structural diversity and a plethora of biological activities. Owing to their structural variation and potential health-promoting and other benefits, they have been targeted for synthesis. Herein, we review the synthesis of natural isoflavonoids belonging to different classes that include isoflavones, isoflavanones, isoflavans, isoflavenes, pterocarpans, rotenoids, coumaronochromones, and coumestans. The synthetic methodologies employed and advancements in synthetic strategies are highlighted.
Collapse
Affiliation(s)
- Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa.
| | - Siyanda T Mthembu
- Department of Physical and Earth Sciences, Faculty of Natural and Applied Sciences, Sol Plaatje University, P/Bag x 5008, Kimberley, 8300, South Africa
| | - Molahlehi S Sonopo
- Applied Radiation Department, South African Nuclear Energy Corporation Ltd, Pelindaba, Brits 0240, South Africa
| |
Collapse
|
2
|
Wasilewicz A, Zwirchmayr J, Kirchweger B, Bojkova D, Cinatl J, Rabenau HF, Rollinger JM, Beniddir MA, Grienke U. Discovery of anti-SARS-CoV-2 secondary metabolites from the heartwood of Pterocarpus santalinus using multi-informative molecular networking. Front Mol Biosci 2023; 10:1202394. [PMID: 37347040 PMCID: PMC10280016 DOI: 10.3389/fmolb.2023.1202394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
A pigment-depleted extract from the heartwood of Pterocarpus santalinus L. f. (PS-DE) showed promising anti-SARS-CoV-2 activity with an IC50 of 29.9 μg/mL in Caco-2-F03 cells. To determine the potential active constituents within the extract prior to isolation, multi-informative molecular network (MN) was applied. Therefore, the extract was separated by high-performance counter-current chromatography (HPCCC) into 11 fractions which were subsequently tested for anti-SARS-CoV-2 activity and analysed by UPLC-tandem mass spectrometry (MS2). The resulting MN combines the bioactivity data of the fractions with the MS2 data. The MN analysis led to the targeted isolation of seven compounds including one pterocarpan (7) reported for the first time as constituent of P. santalinus and four so far undescribed natural products (NPs) that belong to the compound classes of arylpropanes (9), isoflavanones (10) coumestans (16) and 3-arylcoumarins (17), respectively. In total, 15 constituents from the heartwood of P. santalinus and one synthetic isoflavonoid that is structurally related to the natural metabolites were tested for anti-SARS-CoV-2 activity. Thereby, the two pterocarpans (-)-homopterocarpin (5) and (-)-medicarpin (2), the stilbene (E)-pterostilbene (1) and the isoflavonoid 7-O-methylgenistein (11) showed a distinct antiviral activity with IC50 values of 17.2, 33.4, 34.7, and 37.9 µM, respectively, and no cytotoxic effects against Caco-2-F03 cells (CC50 > 100 µM). In addition, a structure-activity relationship (SAR) was proposed indicating structural requirements of pterocarpans for anti-SARS-CoV-2 activity. The herein presented results support the implementation of multi-informative molecular networks as powerful tool for dereplication and targeted isolation of bioactive NPs.
Collapse
Affiliation(s)
- Andreas Wasilewicz
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional, Sport Sciences, University of Vienna, Vienna, Austria
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Holger F. Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Judith M. Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Orsay, France
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zhang Q, Nie H, Zhang K, Huang H, Song C. A novel base-promoted intramolecular cyclization approach for the synthesis of benzofurans, benzothiophenes and indoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Yan Q, Jiang Y, Song X, Lu G, Zhang Q, Du Z, Chan ASC, Zou Y. Synthesis of Phenolic Coumestans via a Sequential Dehydrogenation/Oxa-Michael Addition Reaction of 2',4'-Dihydroxyl-3-arylcoumarins. J Org Chem 2022; 87:5785-5794. [PMID: 35420815 DOI: 10.1021/acs.joc.2c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile and practical approach for the synthesis of natural coumestans and derivatives starting from 2',4'-dihydroxyl-3-arylcoumarins has been developed. The process involved a seqential intramolecular dehydrogenation/oxa-Micheal reaction efficiently promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene at 40 °C under metal- and ligand-free conditions with good functional group compatibility.
Collapse
Affiliation(s)
- Qinfang Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Guoqing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qianzhong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhibo Du
- Zhongshan WanHan Pharmaceutical Company, Ltd., Zhongshan 528451, People's Republic of China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Zhongshan WanHan Pharmaceutical Company, Ltd., Zhongshan 528451, People's Republic of China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Zhongshan WanHan Pharmaceutical Company, Ltd., Zhongshan 528451, People's Republic of China
| |
Collapse
|
5
|
Abstract
Coumarin (2H-chromen-2-one) derivatives have important uses in medicinal and synthetic chemistry, for example, as fluorescent probes. These properties have prompted chemists to develop efficient synthetic methods to synthesize the coumarin core and/or to functionalize it. In this context, many metal-catalyzed syntheses of coumarins have been introduced; among them, copper-catalyzed reactions appear to be very promising owing to the non-toxicity and cheapness of copper complexes. In this mini-review, the results in this field are summarized. We hope to stimulate other applications of these complexes in the preparation of coumarin derivatives.
Collapse
|
6
|
Shinde VN, Rangan K, Kumar D, Kumar A. Palladium-Catalyzed Weakly Coordinating Lactone-Directed C-H Bond Functionalization of 3-Arylcoumarins: Synthesis of Bioactive Coumestan Derivatives. J Org Chem 2021; 86:9755-9770. [PMID: 34181412 DOI: 10.1021/acs.joc.1c01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A palladium-catalyzed highly regioselective ortho-selective C-H functionalization of 3-arylcoumarins has been developed. The method utilizes the weakly coordinating lactone as a directing group. The versatility of the strategy is highlighted by developing methodologies for alkenylation, halogenation, fluoroalkoxylation, and hydroxylation. Different functional groups were well tolerated, and functionalized coumarins were obtained in moderate to high yields. The method also showed good selectivity for monofunctionalization versus difunctionalization. The generated ortho-hydroxy derivatives were cyclized in the presence of DDQ, thus developing a simple and fast method for the synthesis of bioactive coumestan from 3-arylcoumarins.
Collapse
Affiliation(s)
- Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
7
|
Song X, Luo X, Sheng J, Li J, Zhu Z, Du Z, Miao H, Yan M, Li M, Zou Y. Copper-catalyzed intramolecular cross dehydrogenative coupling approach to coumestans from 2'-hydroxyl-3-arylcoumarins. RSC Adv 2019; 9:17391-17398. [PMID: 35519854 PMCID: PMC9064580 DOI: 10.1039/c9ra01909j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
A copper-catalyzed intramolecular cross dehydrogenative C-O coupling reaction of 2'-hydroxyl-3-arylcoumarins was developed. This protocol provided a facile and efficient strategy for the construction of natural coumestans and derivatives in moderate to high yields. This transformation exhibited good functional group compatibility and was amenable to substrates with free phenolic hydroxyl groups.
Collapse
Affiliation(s)
- Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Jianfei Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Zefeng Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Co., Ltd Zhongshan 528451 P. R. China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Meng Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Mingkang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
- Zhongshan WanHan Pharmceutical Co., Ltd Zhongshan 528451 P. R. China
| |
Collapse
|
8
|
Wang F, Lin Z, Yu W, Hu Q, Shu C, Zhang W. Copper-catalyzed C–H acyloxylation of 2-phenylpyridine using oxygen as the oxidant. RSC Adv 2018; 8:16378-16382. [PMID: 35542218 PMCID: PMC9080246 DOI: 10.1039/c8ra01974f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
An efficient copper-catalyzed direct o-acyloxylation of 2-phenylpyridine with carboxylic acids using oxygen as the oxidant has been developed. Various acids including aromatic acids, cinnamic acids and aliphatic acids are effective acyloxylation reagents and provide the desired products in moderate to excellent yields. The reaction proceeds well under an oxygen atmosphere, making this method potentially practical. A copper catalyzed direct o-acyloxylation of 2-phenylpyridine with various carboxylic acids using oxygen as oxidant has been developed.![]()
Collapse
Affiliation(s)
- Feifan Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zhiyang Lin
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Weisheng Yu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qingdong Hu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Chao Shu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Wu Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|