1
|
Yu H, Hao X, Gao Y, Yang L, Qin Y, Li X, Yang YL. Precursor-Directed Biosynthesis of Panepoxydone Derivatives with Nitric Oxide Production Inhibitory Activity. Chembiochem 2025; 26:e202400691. [PMID: 39436752 DOI: 10.1002/cbic.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Panepoxydone is a natural NF-κB inhibitor isolated from basidiomycetes belonging to the genus Panus and Lentinus. It is biosynthesized from prenylhydroquinone through successive hydroxylation, epoxidation, and reduction reactions. In this study, we establish an efficient precursor-directed biosynthesis strategy for the structural expansion of panepoxydone based on its biosynthetic pathway. Supplementation of the panepoxydone-producing strain, Panus rudis, with various prenylhydroquinone analogues enabled the production of fourteen previously undescribed panepoxydone derivatives, panepoxyquinoid A-N (2-14). The obtained panepoxydone derivatives together with their parental molecules were evaluated for their inhibitory activity on LPS-induced NO production in RAW 264.7 cells. Compounds 1, 5-6, 10-11, and 14-15 displayed significant suppressive effects on LPS-induced NO production with IC50 values ranging from 4.3 to 30.1 μM.
Collapse
Affiliation(s)
- Huiping Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuejing Hao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yungeng Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Lin Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yao Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoqing Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Yang YL, Zhou M, Yang L, Gressler M, Rassbach J, Wurlitzer JM, Zeng Y, Gao K, Hoffmeister D. A Mushroom P450-Monooxygenase Enables Regio- and Stereoselective Biocatalytic Synthesis of Epoxycyclohexenones. Angew Chem Int Ed Engl 2023; 62:e202313817. [PMID: 37852936 DOI: 10.1002/anie.202313817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.
Collapse
Affiliation(s)
- Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Man Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Lin Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Johannes Rassbach
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
3
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
4
|
Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The recently discovered natural product (NP) (+)-floyocidin B with antimicrobial activity against Mycobacterium tuberculosis displays a hitherto unknown dihydroisoquinolinone scaffold in the class of the epoxyquinone NPs. The 4,5-regioselective functionalization of 2-chloropyridines was identified as a suitable strategy leading to the total syntheses of (+)-floyocidin B and analogs. In this paper, we present the long and winding evolution process to the final synthetic pathway, including model systems for route scouting and elucidation of side products, which enabled us to understand the unique reactivity of this unprecedented scaffold. A special focus was laid on method studies with different 2-chloropyridines, disclosing an unexpected effect of the 2-chloro substituent on the regioselectivity compared to 2-unsubstituted or carbon-substituted pyridines. Finally, a head-to-head comparison with the previously described synthesis of all four stereoisomers of the NP (−)-avicennone C revealed significant differences in the reactivity of these structurally closely related scaffolds.
Collapse
|
5
|
Lin Y, Wu H, Liu Z, Li J, Cai R, Hashimoto M, Wang L. Additive-free aerobic oxidation of hydroazobenzenes: Access to azobenzenes and epoxidation of enones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Luo G, Jia Y, Hu Y, Wu F, Wang M, Chen X. Practical synthesis of ECH and epoxyquinols A and B from (-)-shikimic acid. Org Biomol Chem 2022; 20:4608-4615. [PMID: 35608102 DOI: 10.1039/d2ob00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of ECH, epoxyquinols A and B, and two bioactive analogs EqM and RKTS-33 has been completed starting from (-)-shikimic acid. Rapid establishment of the desired epoxyquinol core is facilitated through a key allylic oxidation with high stereoselectivity, which is achieved by fine tuning the cyclohexene substrate structure and reaction conditions.
Collapse
Affiliation(s)
- Guiyin Luo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Yuanliang Jia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Yue Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Folei Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Maolin Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
7
|
Péault L, Planchat A, Nun P, Le Grognec E, Coeffard V. Atom Economical Photocatalytic Oxidation of Phenols and Site-Selective Epoxidation Toward Epoxyquinols. J Org Chem 2021; 86:18192-18203. [PMID: 34851652 DOI: 10.1021/acs.joc.1c02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of a multiple-bond-forming process merging the singlet oxygen-mediated dearomatization of 3,4-disubstitued phenols and diastereo- and regioselective epoxidation is described. This one-pot strategy using a transition metal-free multicatalytic system comprised of rose bengal and cesium carbonate allowed the efficient formation of functionalized epoxyquinol products under mild conditions. Mechanistic investigations have been performed to shed the light on the key species involved in this transformation.
Collapse
Affiliation(s)
- Louis Péault
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | - Pierrick Nun
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Erwan Le Grognec
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Vincent Coeffard
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
8
|
Staszczak M. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System. Int J Mol Sci 2021; 22:13309. [PMID: 34948102 PMCID: PMC8707610 DOI: 10.3390/ijms222413309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal pathway responsible for regulated degradation of intracellular proteins in eukaryotes. As the principal proteolytic pathway in the cytosol and the nucleus, the UPS serves two main functions: the quality control function (i.e., removal of damaged, misfolded, and functionally incompetent proteins) and a major regulatory function (i.e., targeted degradation of a variety of short-lived regulatory proteins involved in cell cycle control, signal transduction cascades, and regulation of gene expression and metabolic pathways). Aberrations in the UPS are implicated in numerous human pathologies such as cancer, neurodegenerative disorders, autoimmunity, inflammation, or infectious diseases. Therefore, the UPS has become an attractive target for drug discovery and development. For the past two decades, much research has been focused on identifying and developing compounds that target specific components of the UPS. Considerable effort has been devoted to the development of both second-generation proteasome inhibitors and inhibitors of ubiquitinating/deubiquitinating enzymes. With the feature of unique structure and bioactivity, secondary metabolites (natural products) serve as the lead compounds in the development of new therapeutic drugs. This review, for the first time, summarizes fungal secondary metabolites found to act as inhibitors of the UPS components.
Collapse
Affiliation(s)
- Magdalena Staszczak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Kleiner Y, Pöverlein C, Klädtke J, Kurz M, König HF, Becker J, Mihajlovic S, Zubeil F, Marner M, Vilcinskas A, Schäberle TF, Hammann P, Schuler SMM, Bauer A. The Discovery and Structure-Activity Evaluation of (+)-Floyocidin B and Synthetic Analogs. ChemMedChem 2021; 17:e202100644. [PMID: 34699131 PMCID: PMC9298916 DOI: 10.1002/cmdc.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis represents one of the ten most common courses of death worldwide and the emergence of multidrug‐resistant M. tuberculosis makes the discovery of novel anti‐tuberculosis active structures an urgent priority. Here, we show that (+)‐floyocidin B representing the first example of a novel dihydroisoquinoline class of fungus‐derived natural products, displays promising antitubercular hit properties. (+)‐Floyocidin B was identified by activity‐guided extract screening and its structure was unambiguously determined by total synthesis. The absolute configuration was deduced from a key synthesis intermediate by single crystal X‐ray diffraction analysis. A hit series was generated by the isolation of further natural congeners and the synthesis of analogs of (+)‐floyocidin B. Extensive biological and physicochemical profiling of this series revealed first structure‐activity relationships and set the basis for further optimization and development of this novel antitubercular scaffold.
Collapse
Affiliation(s)
- Yolanda Kleiner
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Christoph Pöverlein
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Jannike Klädtke
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Henrik F König
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute of Organic Chemistry, Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jonathan Becker
- Institute of Organic Chemistry, Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Florian Zubeil
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Michael Marner
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Till F Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Peter Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany.,Infectious Diseases - Natural Product Research Evotec International GmbH, Marie-Curie-Straße 7, 37079, Goettingen, Germany
| | - Sören M M Schuler
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) (Germany), Ohlebergsweg 12, 35392, Giessen, Germany.,Infectious Diseases - Natural Product Research Evotec International GmbH, Marie-Curie-Straße 7, 37079, Goettingen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Zhao H, Zou J, Xu W, Hu D, Guo LD, Chen JX, Chen GD, So KF, Yao XS, Gao H. Diisoprenyl-cyclohexene/ane-Type Meroterpenoids from Biscogniauxia sp. and Their Anti-inflammatory Activities. J Org Chem 2021; 86:11177-11188. [PMID: 34043349 DOI: 10.1021/acs.joc.1c00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A secondary metabolites investigation on Biscogniauxia sp. 71-10-1-1 was carried out, which led to the obtention of nine new diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9) and two new isoprenylbenzoic acid-type meroterpeniods (10-11). The structures of these isolates were established on the basis of multispectroscopic analyses, ECD, and 13C chemical shifts calculations, and single-crystal X-ray diffraction. Among them, biscognin A (1) is the first diisoprenyl-cyclohexene-type meroterpenoid with a unique 2-isopropyl-6'-methyloctahydro-1'H-spiro[cyclopropane-1,2'-naphthalene] skeleton. Biscognienyne F (5) is the first diisoprenyl-cyclohexene-type meroterpenoid with a cyclic carbonate. The anti-inflammatory assays of the majority of compounds were evaluated, which exhibited that compounds 3 and 5 can obviously inhibit pro-inflammatory cytokines TNF-α and IL-6 productions. This is the first report for diisoprenyl-cyclohexene-type meroterpenoids with anti-inflammatory activity. Moreover, the possible biogenetic pathways of the majority of compounds (1-5) are proposed.
Collapse
Affiliation(s)
- Huan Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Xu Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong Medical Key Laboratory of Brain Function and Diseases/Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
11
|
Kleiner Y, Hammann P, Becker J, Bauer A, Pöverlein C, Schuler SMM. Total Synthesis and Structure Revision of (-)-Avicennone C. J Org Chem 2020; 85:13108-13120. [PMID: 32945163 DOI: 10.1021/acs.joc.0c01792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All four possible stereoisomers of the natural product (-)-avicennone C were synthesized using two different methods for ring closure. The absolute stereochemistry was elucidated unambiguously by comparison of the analytical data with those of the reported natural product and by single X-ray crystal diffraction of synthetic intermediates. The proposed structure needed to be revised with regard to the absolute configuration of the stereogenic center bearing the secondary hydroxyl group. The reported synthesis offers a flexible, selective, and efficient access to all possible stereoisomers and may be of value for the stereoselective synthesis of other epoxyquinone natural products.
Collapse
Affiliation(s)
- Yolanda Kleiner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Bioresources, 35392 Giessen, Germany
| | - Peter Hammann
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Christoph Pöverlein
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Sören M M Schuler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Bioresources, 35392 Giessen, Germany
| |
Collapse
|
12
|
Shui F, Jia J, Yang X, Zhou Q, Jiang Y, Chen X. Synthesis of (+)-Epoxydon, (-)-Phyllostine, (-)-RKTS 33, and (-)-Parasitenone Featuring Selective Sulfonylation and Oxirane Ring Closure of Aldol Cyclization Products. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Shui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| | - Junhao Jia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| | - Xing Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| | - Qin Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| | - Yimin Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu PR China
| |
Collapse
|
13
|
Abstract
We describe the total synthesis of epoxyquinoid natural products (+)-pestalofone A and (+)-iso-A82775C. The synthesis of (+)-16-oxo-iso-A82775C, the putative biosynthetic precursor of pestalofone C, is also presented. The allene moiety present in (+)-iso-A82775C and (+)-16-oxo-iso-A82775C was constructed from the ketodiene-yne group via a biosynthetically relevant sequence involving a conjugate reduction and a base-catalyzed tautomerization. Attempted Diels-Alder reaction-based dimerizations of (+)-16-oxo-iso-A82775C and (+)-iso-A82775C toward pestalofones B and C are also described.
Collapse
Affiliation(s)
- Geon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taewan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Moroz AA, Zhulanov VE, Dmitriev MV, Maslivets AN. Synthesis of Oxirane Derivatives of 1H-Pyrrole-2,3-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
|
19
|
Kim G, Kim MJ, Chung G, Lee HY, Han S. (+)-Dimericbiscognienyne A: Total Synthesis and Mechanistic Investigations of the Key Heterodimerization. Org Lett 2018; 20:6886-6890. [DOI: 10.1021/acs.orglett.8b03025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Geon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Myungjo J. Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Garam Chung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
20
|
Wu Y, Zhou G, Meng Q, Tang X, Liu G, Yin H, Zhao J, Yang F, Yu Z, Luo Y. Visible Light-Induced Aerobic Epoxidation of α,β-Unsaturated Ketones Mediated by Amidines. J Org Chem 2018; 83:13051-13062. [PMID: 30285439 DOI: 10.1021/acs.joc.8b01710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An aerobic photoepoxidation of α,β-unsaturated ketones driven by visible light in the presence of tetramethylguanidine (3b), tetraphenylporphine (H2TPP), and molecular oxygen under mild conditions was revealed. The corresponding α,β-epoxy ketones were obtained in yields of up to 94% in 96 h. The reaction time was shortened to 4.6 h by flow synthesis. The mechanism related to singlet oxygen was supported by experiments and density functional theory (DFT) calculations.
Collapse
|
21
|
Modugu NR, Mehta G. Synthesis of the Polyoxygenated Cyclohexanoid Core of Bioactive Glycosides Xylosmin and Flacourtosides E and F. J Org Chem 2018; 83:10573-10579. [DOI: 10.1021/acs.joc.8b01389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nagi Reddy Modugu
- Department of Organic Synthesis and Process Chemistry (CSIR), Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|