1
|
Chakraborty N, Mitra AK. The versatility of DABCO as a reagent in organic synthesis: a review. Org Biomol Chem 2023; 21:6830-6880. [PMID: 37605948 DOI: 10.1039/d3ob00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
DABCO (1,4-diazabicyclo[2.2.2]octane) has garnered a lot of interest for numerous organic transformations since it is a low-cost, environmentally friendly, reactive, manageable, non-toxic and basic organocatalyst with a high degree of selectivity. Moreover, DABCO functions as a nucleophile as well as a base in a variety of processes for the synthesis of a wide array of molecules, including carbocyclic and heterocyclic compounds. Protection and deprotection of functional groups and the formation of carbon-carbon bonds are also catalyzed by DABCO. The reagent also finds applications in the synthesis of functional groups like isothiocyanate, amide and ester. Application of DABCO in cycloaddition, coupling, aromatic nucleophilic substitution, ring-opening, oxidation and rearrangement reactions is also noteworthy. This is a state of the art review that has encompassed a variety of processes for the synthesis of organic frameworks using DABCO.
Collapse
Affiliation(s)
- Nitisha Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, Pin: 826004, India
| | - Amrit Krishna Mitra
- Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, Pin: 712409, India.
| |
Collapse
|
2
|
Shukla K, Khushboo, Mahto P, Singh VK. Enantioselective synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction using a bifunctional squaramide catalyst. Org Biomol Chem 2022; 20:4155-4160. [PMID: 35521781 DOI: 10.1039/d2ob00633b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective approach for the synthesis of tetrahydrofuran spirooxindoles via domino oxa-Michael/Michael addition reaction of γ-hydroxyenones to isatylidene malononitriles, using a cinchona derived bifunctional squaramide catalyst has been developed. The methodology is the first success of enantioselective oxa-Michael addition to isatylidene malononitriles. The spiro products were obtained in excellent yields with moderate to good enantio- and diastereoselectivities. Scale-up of the reaction and synthetic transformation of the spiro product into structurally complex molecules have been performed.
Collapse
Affiliation(s)
- Khyati Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Khushboo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Pratibha Mahto
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| |
Collapse
|
3
|
Benaglia M, Greco SJ, Westphal R, Venturini Filho E, Medici F. Stereoselective Domino Reactions in the Synthesis of Spiro Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1771-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.1 Introduction2 Asymmetric Domino Reactions2.1 Domino Reactions Initiated by Michael Reactions2.2 Domino Reactions Initiated by Mannich Reactions2.3 Domino Reactions Initiated by Knoevenagel Reactions2.4 Domino Reactions Initiated by Cycloaddition Reactions2.5 Domino Reactions Initiated by Metal Insertion2.6 Other Mechanisms3 Conclusion
Collapse
|
4
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Organocatalytic asymmetric synthesis of pyrrolo[3,2-c]quinolines via a formal [3+2] cycloaddition-lactamization cascade reaction using a bifunctional squaramide catalyst. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Jangid DK. DABCO as a Base and an Organocatalyst in Organic Synthesis: A Review. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666191227101538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the organocatalysts 1,4-diazabicyclo[2.2.2]octane (DABCO) is an excellent solid
catalyst in a number of reactions. It is also a good nucleophile and a base in numerous reactions for the
synthesis of heterocycles. DABCO catalyzes many reactions like cycloaddition reactions, coupling reactions,
Baylis-Hillman reaction, Henry reaction, ring opening reactions, etc. One more advanced feature
of these reactions is that they proceed through environmental friendly pathway. DABCO has
more advantages than other organic catalysts because it is an inexpensive, non.toxic base, an ecofriendly
and a highly reactive catalyst for building of organic frameworks, which produce the desired
products in excellent yields with high selectivity. Many catalytic applications of DABCO have been
reported for the synthesis of an organic framework which has been discussed in this review.
Collapse
Affiliation(s)
- Dinesh K. Jangid
- Department of Chemistry, Faculty of Science, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Ji Y, Li L, Zhu G, Zhou Y, Lu X, He W, Gao L, Rong L. Efficient reactions for the synthesis of pyrazolo[3,4‐
b
]pyridine and pyrano[2,3‐
c
]pyrazole derivatives from
N
‐methyl‐1‐(methylthio)‐2‐nitroethen‐1‐amine. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yifan Ji
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Li Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Guangzhou Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Ya Zhou
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Xinchi Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Wenjing He
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Lijiu Gao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou China
| |
Collapse
|
8
|
Introduction of an efficient DABCO-based bis-dicationic ionic salt catalyst for the synthesis of arylidenemalononitrile, pyran and polyhydroquinoline derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
The versatility of DABCO: synthetic applications of its basic, nucleophilic, and catalytic properties Part 2*. Catalysis of Michael and Biginelli reactions and nucleophilic addition at C=X and C≡X bonds. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Luo W, Shao B, Li J, Song D, Yi X, Ling F, Zhong W. Divergent synthesis of spirocyclopentene-pyrazolones and pyrano[2,3-c]-pyrazoles via Lewis base controlled annulation reactions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Enantioselective Vinylogous Michael–Aldol Reaction To Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Org Lett 2019; 21:1632-1636. [DOI: 10.1021/acs.orglett.9b00168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haipeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shulin Ge
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Shukla K, Shah S, Rana NK, Singh VK. An efficient and highly diastereoselective synthesis of carbocyclic spiropyrazolones via one-pot sequential dual organo-silver catalyzed Michael-hydroalkylation reactions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|